Skip to main content
Log in

Multiscale diffusion–thermal–mechanical cohesive zone model for concrete

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The present work establishes a reliable model to describe the influence due to the interfacial transition zone (ITZ) between cement paste and aggregates on the mechanical, thermal and diffusion properties of concrete. The mesostructure of concrete consists of aggregates with a random distribution embedded in the cement paste as well as the interface elements with zero-thickness representing the ITZ. In this work, the cohesive zone model (CZM) is used to model the debonding at the ITZ between cement paste and aggregates. Furthermore, a traction-separation law in CZM combined with micromechanically motivated thermal flux-separation relation and diffusion flux-separation relation is developed, thus enabling to describe the temperature jump and humidity jump across the cohesive crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Janssen M, Zuidema J, Wanhill RJH (2004) Fundamentals of fracture mechanics. Taylor & Francis, London

    Google Scholar 

  2. Kundu T (2008) Fundamentals of fracture mechanics. Taylor & Francis, Boca Raton

    MATH  Google Scholar 

  3. Shah SP, Ouyang CS (1992) Failure of concrete: fracture mechanics approach. Anal Mecán Fract 9:352–375

    Google Scholar 

  4. Murthy ARC, Palani GS, Iyer NR (2009) State-of-the-art review on fracture analysis of concrete structural components. Sadhana 31:345–367

    Article  Google Scholar 

  5. Eckardt S (2009) Adaptive heterogeneous multiscale models for the nonlinear simulation of concrete. Ph.D. thesis, Bauhaus-Universität Weimar, Weimar, Germany

  6. Elices M, Rocco C, Roselló C (2009) Cohesive crack modelling of a simple concrete: experimental and numerical results. Eng Fract Mech 76:1398–1410

    Article  Google Scholar 

  7. Idiart AE, López CM, Carol I (2011) Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model. Cem Concr Compos 33:411–423

    Article  Google Scholar 

  8. Snozzi L, Gatuingt F, Molinari JF (2012) A meso-mechanical model for concrete under dynamic tensile and compressive loading. Int J Fract 178:179–194

    Article  Google Scholar 

  9. Wong HS, Zobel M, Buenfeld NR, Zimmerman RW (2009) Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying. Mag Concr Res 761:571–589

    Article  Google Scholar 

  10. Ramesh G, Sotelino ED, Chen WF (1996) Effect of transition zone on elastic moduli of concrete materials. Cem Concr Res 26:611–622

    Article  Google Scholar 

  11. Nadeau JC (2003) A multiscale model for effective moduli of concrete incorporating itz watercement ratio gradients, aggregate size distributions and entrapped voids. Cem Concr Res 33:103–402

    Article  Google Scholar 

  12. Lee KM, Park JH (2008) A numerical model for elastic modulus of concrete considering interfacial transition zone. Cem Concr Res 38:396–402

    Article  Google Scholar 

  13. Carol I, López CM, Roa O (2001) Micromechanical analysis of quasi-brittle materials using fracture-based interface elements. Int J Numer Methods Eng 52:193–215

    Article  Google Scholar 

  14. Häfner S, Eckardt S, Luther T, Könke C (2006) Mesoscale modeling of concrete: geometry and numerics. Comput Struct 84:450–461

    Article  Google Scholar 

  15. Eckardt S, Könke C (2008) Adaptive damage simulation of concrete using heterogeneous multiscale models. J Algorithms Comput Technol 2:275–297

    Article  Google Scholar 

  16. Snozzi L, Caballero A, Molinari JF (2011) Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading. Cem Concr Res 41:1130–1142

    Article  Google Scholar 

  17. Willam K, Rhee I, Shing B (2004) Interface damage model for thermomechanical degradation of heterogeneous materials. Comput Methods Appl Mech Eng 193:3327–3350

    Article  MathSciNet  MATH  Google Scholar 

  18. Zavarise G, Wriggers P, Stein E, Schrefler BA (1992) A numerical model for thermomechanical contact based on microscopic interface laws. Int J Numer Methods Eng 35:767–785

    Article  MATH  Google Scholar 

  19. Özdemir I, Brekelmans WAM, Geers MGD (2010) A thermo-mechanical cohesive zone model. J Comput Mech 46:735–745

    Article  MATH  Google Scholar 

  20. Benabou L, Sun Z, Dahoo PR (2013) A thermo-mechanical cohesive zone model for solder joint lifetime prediction. Int J Fatigue 49:18–30

    Article  Google Scholar 

  21. Sapora A, Paggi M (2014) A coupled cohesive zone model for transient analysis of thermoelastic interface debonding. J Comput Mech 53:845–857

    Article  MathSciNet  MATH  Google Scholar 

  22. Gérard B, Marchand J (2000) Influence of cracking on the diffusion properties of cement-based materials. Part I: influence of continuous cracks on the steady-state regime. Cem Concr Res 30:37–43

    Article  Google Scholar 

  23. Kamali-Bernard S, Bernard F (2009) Effect of tensile cracking on diffusivity of mortar: 3D numerical modelling. Comput Mater Sci 47:178–185

    Article  Google Scholar 

  24. Bentz DP, Garboczi EJ, Yang L, Martys N, Sakulich AR, Weiss WJ (2013) Modeling of the influence of transverse cracking on chloride penetration into concrete. Cem Concr Compos 38:65–74

    Article  Google Scholar 

  25. Segura JM, Carol I (2004) On zero-thickness interface elements for diffusion problems. Intl J Numer Anal Methods Geomech 28:947–962

    Article  MATH  Google Scholar 

  26. Segura JM, Carol I (2008) Coupled hm analysis using zero-thickness interface elements with double nodes. Part i: theoretical model. Intl J Numer Anal Methods Geomech 32:2083–2101

    Article  MATH  Google Scholar 

  27. Segura JM, Carol I (2008) Coupled hm analysis using zero-thickness interface elements with double nodespart ii: verification and application. Intl J Numer Anal Methods Geomech 32:2103–2123

    Article  MATH  Google Scholar 

  28. Mehta PK, Monteiro PJM (1993) Concrete: microstructure, properties, and materials. McGraw-Hill Professional, New York

  29. Mehta PK, Monteiro PJM (2001) Concrete: microstructure, properties, and materials. McGraw-Hill Professional, New York

    Google Scholar 

  30. Wriggers P, Moftah SO (2006) Mesoscale models for concrete: homogenisation and damage behaviour. Finite Elem Anal Des 42:623–636

    Article  Google Scholar 

  31. Comby-Peyrot I, Bernard F, Bouchard PO, Bay F, Garcia-Diaz E (2009) Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction. Comput Mater Sci 46:1163–1177

    Article  Google Scholar 

  32. Wang ZM, Kwan AKH, Chan HC (1999) Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Comput Struct 70:533–544

    Article  MATH  Google Scholar 

  33. Moftah SO (2005) Computational homogenisation of concrete. Ph.D. thesis, Leibniz Universität Hannover, Hannover, Germany

  34. Maso JC (1996) Interfacial transition zone in concrete. Rilem Report 11

  35. Monteiro PJM, Maso JC, Ollivier JP (1985) The aggregate-mortar interface. Cem Concr Res 15:953–958

    Article  Google Scholar 

  36. Day RA, Potts DM (1994) Zero thickness interface elements-numerical stability and application. Int J Numer Anal Methods Geomech 18:689–708

    Article  Google Scholar 

  37. Zhang WH, Cai YQ (2010) Continuum damage mechanics and numerical applications. Springer, Berlin

    Book  Google Scholar 

  38. Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25:729–737

    Article  Google Scholar 

  39. Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory-application to concrete. J Eng Mech 115:345–365

    Article  Google Scholar 

  40. Karihaloo BL, Fu D (1990) An isotropic damage model for plain concrete. Eng Fract Mech 35:205–209

    Article  Google Scholar 

  41. Comi C, Perego U (2001) Fracture energy based bi-dissipative damage model for concrete. Int J Solids Struct 38:6427–6454

    Article  MATH  Google Scholar 

  42. Halm D, Dragon A (1998) An anisotropic model of damage and frictional sliding for brittle materials. Eur J Mech A/Solids 17:439–460

    Article  MathSciNet  MATH  Google Scholar 

  43. Fichant S, Borderie CL, Pijaudier-Cabot G (1999) Isotropic and anisotropic descriptions of damage in concrete structures. Mech Cohes Frict Mater 4:339–359

    Article  Google Scholar 

  44. Badel P, Godard V, Leblond JB (2007) Application of some anisotropic damage model to the prediction of the failure of some complex industrial concrete structure. Int J Solids Struct 44:5848–5874

    Article  MATH  Google Scholar 

  45. Kim CM, Al-Rub RKA (2011) Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cem Concr Res 41:339–358

    Article  Google Scholar 

  46. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  47. Chandra N, Li H, Shet C, Ghonem H (2002) Some issues in the application of cohesive zone models for metal-ceramic interfaces. Int J Solids Struct 39:2827–2855

    Article  MATH  Google Scholar 

  48. Li S, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2005) Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer-matrix composite. Compos Sci Technol 65:537–549

    Article  Google Scholar 

  49. Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 64:1–20

    Google Scholar 

  50. Li SF, Zeng XW, Ren B, Qian J, Zhang JS, Jha AK (2012) An atomistic-based interphase zone model for crystalline solids. Comput Methods Appl Mech Eng 229–232:87–109

    Article  MathSciNet  Google Scholar 

  51. Tvergaard V (2003) Cohesive zone representations of failure between elastic or rigid solids and ductile solids. Eng Fract Mech 70:1859–1868

    Article  Google Scholar 

  52. Ortiz M, Pandolfi A (1999) Finite deformation irreversible cohesive elements for three dimensional crack propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  MATH  Google Scholar 

  53. Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Methods Eng 68:542–582

    Article  MathSciNet  MATH  Google Scholar 

  54. Kolluri M, Hoefnagels JPM, van Dommelsen JAW, Geers MGD (2014) Irreversible mixed mode interface delamination using a combined damage-plasticity cohesive zone enabling unloading. Int J Fract 185:77–95

    Article  Google Scholar 

  55. Biel A, Stigh U (2010) Damage and plasticity in adhesive layer: an experimental study. Int J Fract 165:93–103

    Article  Google Scholar 

  56. Daher N, Maugin GA (1986) The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces. Acta Mech 60:217–240

    Article  MathSciNet  MATH  Google Scholar 

  57. Lipton R (1997) Variational methods, bounds, and size effects for composites with highly conducting interface. J Mech Phys Solids 45:361–384

    Article  MathSciNet  MATH  Google Scholar 

  58. Yvonnet J, He QC, Toulemonde C (2008) Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos Sci Technol 68:2818–2825

    Article  Google Scholar 

  59. Le-Quang H, Bonnet G, He QC (2010) Size-dependent Eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting imperfect interfaces. Phys Rev B 81:064203

    Article  Google Scholar 

  60. Javili A, McBride A, Steinmann P (2013) Numerical modelling of thermomechanical solids with highly-conductive energetic interfaces. Int J Numer Methods Eng 93:551–574

    Article  MathSciNet  Google Scholar 

  61. Yvonnet J, He QC, Zhu QZ, Shao JF (2011) A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Compos Sci Technol 50:1220–1224

    Google Scholar 

  62. Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput Mater Sci 65:542–551

  63. Hashin Z (2001) Thin interphase/imperfect interface in conduction. J Appl Phys 89:2261–2267

    Article  Google Scholar 

  64. Benveniste Y (2006) A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solids 54:708–734

    Article  MathSciNet  MATH  Google Scholar 

  65. Javili A, Kaessmair S, Steinmann P (2014) General imperfect interfaces. Comput Methods Appl Mech Eng 275:76–97

  66. Javili A (2012) Thermomechanics of solids accounting for surfaces and interfaces. Ph.D. thesis, Universität Erlangen-Nürnberg, Erlangen, Germany

  67. Jang SY, Kim BS, Oh BH (2011) Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cem Concr Res 41:9–19

    Article  Google Scholar 

  68. Zohdi TI (2004) Modeling and simulation of a class of coupled thermo–chemo–mechanical processes in multiphase solids. Comput Methods Appl Mech Eng 193:679–699

    Article  MATH  Google Scholar 

  69. Erbts P, Düster A (2012) Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains. Comput Math Appl 64:2408–2430

    Article  MathSciNet  MATH  Google Scholar 

  70. Hain M (2007) Computational homogenization of micro-structural damage due to frost in hardened cement paste. Ph.D. thesis, Leibniz Universität Hannover, Hannover, Germany

  71. Wu T, Temizer İ, Wriggers P (2012) Computational thermal homogenization of concrete. Cem Concr Compos 35:59–70

    Article  MATH  Google Scholar 

  72. Zhang MZ, Guang Y, van Breugel K (2011) Microstructure-based modeling of water diffusivity in cement paste. Constr Build Mater 25:2046–2052

    Article  Google Scholar 

  73. Vasconcelos KL, Bhasin A, Little DN, Lytton RL (2011) Experimental measurement of water diffusion through fine aggregate mixtures. J Mater Civ Eng 23:445–452

    Article  Google Scholar 

  74. Jeon SE (2003) Analysis of concrete structures with hydration heat and differential shrinkage. Ph.D. thesis, Korea Advanced Institute of Science and Technology, Daejeon, Korea

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Wriggers, P. Multiscale diffusion–thermal–mechanical cohesive zone model for concrete. Comput Mech 55, 999–1016 (2015). https://doi.org/10.1007/s00466-015-1149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1149-y

Keywords

Navigation