Skip to main content
Log in

Efficient numerical simulation of aeroacoustics for low Mach number flows interacting with structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An integrated hybrid approach for the numerical simulation of aeroacoustics at low Mach numbers is presented. The method is based on a viscous/acoustic splitting. The turbulent incompressible background flow is computed with large eddy simulation, based on the incompressible Navier-Stokes equations, whereas the acoustics are computed from linearized Euler equations with a high-resolution scheme. The focus is on the numerical efficiency of the approach. To accelerate the computations, hierarchical grids and a frozen fluid approach for the acoustics are employed and investigated. For validation and the investigation of the numerical efficiency and accuracy the sound emission of a plate in the turbulent wake of a circular cylinder is employed as a test case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. FASTEST-Manual (2005) Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau, Technische Universität Darmstadt

  2. Ali I, Becker S, Utzmann J, Munz CD (2008) Aeroacoustic study of a forward facing step using linearized Euler equations. Physica D 237:2184–2189

    Article  MATH  Google Scholar 

  3. Ali I, Escobar M, Kaltenbacher M, Becker S (2008) Time domain computation of flow induced sound. Comput Fluids 37:349–359

    Article  MATH  Google Scholar 

  4. Bailly C, Juvé D (1999) A stochastic approach to compute subsonic noise unsing Linearized Euler Equations. AIAA Paper 99–1872

  5. Berland J, Lafon P, Crouzet F, Daude F, Bailly C (2010) Numerical Insight into Sound Sources of a Rod-Airfoil Flow Configuration Using Direct Noise Calculation. In: 16th AIAA/CEAS Aeroacoustics Conference

  6. Breuer M (1998) Large Eddy Simulations of the subcritical flow past a circular cylinder: numerical and modeling aspects. Int J Numer Methods Fluids 28:1281–1302

    Article  MATH  Google Scholar 

  7. Cabana M, Fortuné V, E L (2010) Direct computation of the sound radiated by shear layers using upwind compact schemes. In: Direct and large-eddy simulation VII, ERCOFTAC Series, vol 13, Springer

  8. Ewert R, Schröder W (2003) Acoustic perturbation equations based on flow decomposition via source filtering. J Comput Phys 188:365–398

    Article  MATH  MathSciNet  Google Scholar 

  9. Germano M, Piomelli U, Moin P, Cabot W (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765

    Article  MATH  Google Scholar 

  10. Gloerfelt X, Lafon P (2008) Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number. Comput Fluids 37:388–401

    Article  MATH  Google Scholar 

  11. Gloerfelt X, Bailly C, Juvé D (2003) Direct computation of the noise radiated bya subsonic cavity flow and application of integral methods. J Sound Vib 266:119–146

    Article  Google Scholar 

  12. Hardin J, Pope D (1994) An acoustic/viscous splitting technique for computational aeroacoustics. Theor Comput Fluid Dyn 6:323–340. doi:10.1007/BF00311844

    Article  MATH  Google Scholar 

  13. Jakirlić S, Kadavelil G, Kornhaas M, Schäfer M, Sternel DC, Tropea C (2010) Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser. Int J Heat Fluid Flow 31:820–832

    Article  Google Scholar 

  14. Kornhaas M (2011) Effiziente numerische Methoden für die Simulation aeroakustischer Probleme mit kleinen Machzahlen. PhD thesis, Technische Universität Darmstadt

  15. Kornhaas M, Sternel DC, Schäfer M (2008) Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization. In: Quality and Reliability of Large-Eddy Simulations, Ercoftac Series 12, Springer, pp 119–130

  16. Kravchenko A, Moin P (2000) Numerical studies of flow over a circular cylinder at \(Re_D=3900\). Phys Fluids 12(2):403–417

    Article  MATH  Google Scholar 

  17. Lehnhäuser T, Schäfer M (2002) Improved linear interpolation practice for finite-volume schemes on complex grids. Int J Numer Methods Fluids 38:625–645

    Article  MATH  Google Scholar 

  18. Lehnhäuser T, Ertem-Müller S, Schäfer M, Janicka J (2004) Advances in numerical methods for simulating turbulent flows. Prog Comput Fluid Mech 4:208–228

    Article  Google Scholar 

  19. Lighthill M (1952) On sound generated aerodynamically. I. General theorie. Proc Royal Soc London A 211:564–587. doi:10.1098/rspa.1952.0060

    Article  MATH  MathSciNet  Google Scholar 

  20. Lighthill M (1954) On sound generated aerodynamically. II. Turbulence as a source of sound. Proc Royal Soc London A 222:1–34

    Article  MATH  MathSciNet  Google Scholar 

  21. Piomelli U, Steett C, Sarkar S (1997) On the computation of sound by large-eddy simulations. J Eng Math 32:217–236

    Article  MATH  Google Scholar 

  22. Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  23. Schäfer M (2006) Computational engineering: introduction to numerical methods. Springer, Berlin

    Google Scholar 

  24. Seo JH, Moon YJ (2005) The perturbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA J 43(8):1716–1724

    Article  Google Scholar 

  25. Serre E, Minguez M, Pasquetti R, Guilmineau E, Deng G, Kornhaas M, Schäfer M, Fröhlich J, Hinterberger C, Rodi W (2013) On simulating the turbulent flow around the Ahmed body: a French-German collaborative evaluation of LES and DES. Comput Fluids 78:10–23

    Article  MATH  MathSciNet  Google Scholar 

  26. Shen W, Sørensen J (1999) Aeroacoustic modelling of low-speed flows. Theor Comput Fluid Dyn 13:271–289

    Article  MATH  Google Scholar 

  27. Shen W, Sørensen J (1999) Comment on the aeroacoustic formulation of Hardin and Pope. AIAA J 37(1):141–143

  28. Shen W, Michelsen J, Sørensen J (2004) A collocated grid finite volume method for aeroacoustic computations of low-speed flows. J Comput Phys 196:348–366

    Article  MATH  Google Scholar 

  29. Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  30. Toro E (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  31. Wagner CA, Hüttl T, Sagaut P (eds) (2007) Large-eddy simulation for acoustics. Cambridge University Press, Cambridge

    Google Scholar 

  32. Winkler M (2007) Untersuchungen zum vibroakustischen Verhalten von Plattenstrukturen in Wirbelströmungen. Diplomarbeit, Fachhochschule Köln, Institut für Fahrzeugtechnik

Download references

Acknowledgments

Thanks are addressed to Frank Kameier from the University of Applied Science Düsseldorf as well as to Klaus Becker and Michael Winkler from the University of Applied Science Köln for the idea to study the cylinder-plate configuration and for providing the corresponding experimental results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schäfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornhaas, M., Schäfer, M. & Sternel, D.C. Efficient numerical simulation of aeroacoustics for low Mach number flows interacting with structures. Comput Mech 55, 1143–1154 (2015). https://doi.org/10.1007/s00466-014-1114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1114-1

Keywords

Navigation