Skip to main content
Log in

An \(\hbox {FE}^{2}\) model for the analysis of shape memory alloy fiber-composites

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This contribution deals with a computational model for a shape memory alloy fiber composite. Three main topics have been considered within the presented model. First, a 1D fiber model is derived which accounts for all relevant nonlinear material phenomena of shape memory alloys. These are pseudoelasticity in the high temperature range and pseudoplasticity in the low temperature range. The latter is closely connected to the shape memory effect. The constrained and two-way shape memory effect are captured as well. Second, the shape memory fiber model is implemented into the finite element method. Two different structural elements are derived which lead to two different discretization schemes. A non-conform meshing concept and a conform meshing concept are presented. Randomly oriented and distributed fibers are considered. Both schemes are compared within the paper. Third, an \(\hbox {FE}^{2}\) ansatz is presented. The computational homogenization process makes the detailed description of the complicated fiber-structure on macro-level dispensable. The micro-structure is considered in a representative volume element. It captures the main characteristics of the multi-functional composite. Finally, numerical examples present the capability of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. McCormick J, DesRoches R, Fugazza D, Auricchio F (2006) Seismic vibration control using superelastic shape memory alloys. J Eng Mater-T ASME 128:294

    Article  Google Scholar 

  2. Castellano M, Colato G, Infanti S (2004) Use of viscous dampers and shock transmission units in the seismic protection of buildings. In: Proceedings of 13th world conference on earthquake engineering, pp. 1–15. Paper No. 2172

  3. Indirli M, Castellano M, Clemente P, Martelli A (2001) Demo-application of shape memory alloy devices: the rehabilitation of the S. Giorgio Church bell tower. In: Liu SC (ed) Smart structures and materials 2001: Smart systems for bridges, structures, and highways, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4330, Society of photo-optical instrumentation engineers (SPIE) conference series, vol 4330, pp. 262–272

  4. Indirli M, Spadoni B, Carni R, Clemente C, Martelli A, Castellano M (2008) Shape memory alloy devices for the structural improvement of masonry heritage structures. Int J Archit Herit 2:93

    Article  Google Scholar 

  5. Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28:1266

    Article  Google Scholar 

  6. Moser K, Bergamini A, Christen R, Czaderski C (2005) Feasibility of concrete prestressed by shape memory alloy short fibers. Mater Struct 38:593

    Article  Google Scholar 

  7. Janke L, Czaderski C, Motavalli M, Ruth J (2005) Formgedächtnislegierungen in Ingenieurstrukturen des Stahlbetonbaues: Materialphänomene, Anwendungskonzepte und Visionen. Mater Struct 38(279):578

    Article  Google Scholar 

  8. Klinkel S, Kohlhaas B (2011) Modellierung und Anwendung von Formgedächtnislegierungen im Bauwesen. Bauingenieur-germany Jahresausgabe 2011/2012:101

    Google Scholar 

  9. Achenbach M, Müller I (1982) A model for shape memory. J Phys Paris 43(C4):163

    Article  Google Scholar 

  10. Seelecke S, Müller I (2004) Shape memory alloy actuators in smart structures: modeling and simulation. Appl Mech Rev 57:23

    Article  Google Scholar 

  11. Brinson L (1993) One-dimensional behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intel Mater Syst Struct 4:229

    Article  Google Scholar 

  12. Leclercq S, Lexcellent C (1996) A general macroscopic description of the thermomechanical behavior of shape memory alloys. J Mech Phys Solids 44(6):953

    Article  Google Scholar 

  13. Raniecki B, Lexcellent C (1998) Thermodynamics of isotropic pseudoelasticity in shape memory alloys. Eur J Mech A Solid 17:185

    Article  MATH  Google Scholar 

  14. Bo Z, Lagoudas D (1999) Thermomechanical modeling of polycrystalline {SMAs} under cyclic loading, Part I: theoretical derivations. Int J Eng Sci 37(9):1089

    Article  MATH  MathSciNet  Google Scholar 

  15. Lagoudas D, Bo Z (1999) Thermomechanical modeling of polycrystalline {SMAs} under cyclic loading, Part II: material characterization and experimental results for a stable transformation cycle. Int J Eng Sci 37(9):1141

    Article  MATH  MathSciNet  Google Scholar 

  16. Bo Z, Lagoudas D (1999) Thermomechanical modeling of polycrystalline {SMAs} under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect. Int J Eng Sci 37(9):1175

    Article  MATH  MathSciNet  Google Scholar 

  17. Bo Z, Lagoudas D (1999) Thermomechanical modeling of polycrystalline {SMAs} under cyclic loading, Part IV: modeling of minor hysteresis loops. Int J Eng Sci 37(9):1205

    Article  MATH  MathSciNet  Google Scholar 

  18. Helm D (2001) Formgedächtnislegierungen: experimentelle Untersuchung, phänomenologische Modellierung und numerische Simulation der thermomechanischen Materialeigenschaften. Ph.D. thesis, Universität Gesamthochschule Kassel

  19. Helm D, Haupt P (2003) Shape memory behaviour: modelling within continuum thermomechanics. Int J Solids Struct 40:827

    Article  MATH  Google Scholar 

  20. Helm D (2007) Numerical simulation of martensititc phase transitions in shape memory alloys using an improved integration algorithm. Int J Numer Methods Eng 69:1997

    Article  MATH  MathSciNet  Google Scholar 

  21. Helm D (2007) Thermomechanics of martensititc phase transformations in shape memory alloys – I. Constitutive theories for small and large deformations. J Mech Mater Struct 2:87

    Article  Google Scholar 

  22. Christ D, Reese S (2008) Thermomechanically coupled modelling of shape memory alloys in the framework of large strains. GAMM-Mitteilungen 31(2):176

    Article  MATH  MathSciNet  Google Scholar 

  23. Christ D, Reese S (2009) A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int J Solids Struct 46:3694

    Article  MATH  Google Scholar 

  24. Christ D (2009) Thermomechanical modelling of shape memory alloy structures in medical applications. Ph.D. thesis, Technische Universität Braunschweig

  25. Lagoudas D (2008) Shape memory alloys: modeling and engineering applications. Springer, Boston

    Google Scholar 

  26. Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape-memory alloy materials. Comput Mech 44(3):405

    Article  MATH  MathSciNet  Google Scholar 

  27. Khandan R, Mahzoon M, Fazelzadeh S, Ali H (2009) A consistent approach for deriving a 1D constitutive equation for shape memory alloys. Smart Mater Struct 18(9):1

    Article  Google Scholar 

  28. Aboudi J, Freed Y (2006) Two-way thermomechanically coupled micromechanical analysis of shape memory alloy composites. J Mech 1:937

    Google Scholar 

  29. Armstrong W, Kino H (1995) Martensitic transformations in a NiTi fiber reinforced 6061 aluminium matrix composite. J Intel Mater Syst Struct 6:809

    Article  Google Scholar 

  30. Boyd J, Lagoudas D (1996) A thermodynamical constitutive model for shape memory materials—Part I: The monolithic shape memory alloy. Int J Plast 12(7):843

    Article  MATH  Google Scholar 

  31. Carvelli V, Taliercio A (1999) A micromechanical model for the analysis of unidirectional elastoplastic composites subjected to 3D stresses. Mech Res Commun 26(5):547

    Article  MATH  Google Scholar 

  32. Cherkaoui M, Sun Q, Song G (2000) MIcromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement. Int J Solids Struct 37:1577

    Article  MATH  Google Scholar 

  33. Notta-Cuvier D, Lauro F, Bennani B, Balieu R (2013) An efficient modelling of inelastic composites with misaligned short fibres. Int J Solids Struct 50:2857

    Article  Google Scholar 

  34. Freed Y, Aboudi J (2008) Micromechanical investigation of plasticity-damage coupling of concrete reinforced by shape memory alloy fibers. Smart Mater Struct 17:1

    Article  Google Scholar 

  35. Gilat R, Aboudi J (2004) Dynamic response of active composite plates: shape memory fibers in polymeric/metallic matrices. Int J Solids Struct 41:5717

    Article  MATH  Google Scholar 

  36. Kawai M, Ogawa H, Baburaj V, Koga T (1999) Micromechanical analysis for hysteretic behavior of unidirectional TiNi SMA fiber composites. J Intel Mater Syst Struct 10:14

    Google Scholar 

  37. Klinkel S, Sansour C, Wagner W (2005) An anisotropic fibre-matrix material model at finite elastic–plastic strains. Comput Mech 35:409

    Article  MATH  Google Scholar 

  38. Marfia S (2005) Micro-macro analysis of shape memory alloy composites. Int J Solids Struct 42:3677

    Article  MATH  Google Scholar 

  39. Song G, Cherkaoui M, Sun Q (1999) Role of microstructure in the thermomechanical behavior of SMA composites. J Eng Mater-T ASME 121(1):86

    Article  Google Scholar 

  40. Gebbeken N (1996) Zur Untersuchung des linearen Tragverhaltens von Verbundkonstruktionen mittels numerischer Methoden. Technical Report 96/1, Universität der Bundeswehr München

  41. Huber F (2006) Nichtlineare dreidimensionale Modellierung von Beton- und Stahlbetontragwerken. Ph.D. thesis, Universität Stuttgart

  42. Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Method Appl Mech 171(3–4):387

    Article  MATH  Google Scholar 

  43. Geers M, Coenen E, Kouznetsova V (2007) Multi-scale computational homogenization of structured thin sheets. Model Simul Mater Sci 15(4):S393

    Article  Google Scholar 

  44. Oskay C, Fish J (2007) Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput Method Appl Mech 196(7):1216

    Article  MATH  MathSciNet  Google Scholar 

  45. Gruttmann F, Wagner W (2013) A coupled two-scale shell model with applications to layered structures. Int J Numer Method Eng 94(13):1233

    Article  MathSciNet  Google Scholar 

  46. Simo J, Hughes T (2000) Computational inelasticity, interdisciplinary applied mathematics mechanics and materials, vol 7. Springer, New York

    Google Scholar 

  47. Neunzert H, Blickensdörfer-Ehlers A (1998) Analysis, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  48. Juhász L (2004) Herleitung eines konstitutiven Modells für Formgedächtnislegierungen. Ph.D. thesis, Universität Karlsruhe

  49. Zohdi T, Wriggers P (2005) Introduction To computational micromechanics. Lecture Notes in applied and computational mechanics. Springer Verlag, Berlin Heidelberg

    Book  Google Scholar 

  50. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357

    Article  MATH  Google Scholar 

  51. Gross D, Seelig T (2001) Bruchmechanik: Mit einer Einführung in die Mikromechanik. Springer, Berlin. URL http://www.books.google.de/books?id=ySI3E0YoEMQC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Klinkel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlhaas, B., Klinkel, S. An \(\hbox {FE}^{2}\) model for the analysis of shape memory alloy fiber-composites. Comput Mech 55, 421–437 (2015). https://doi.org/10.1007/s00466-014-1112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1112-3

Keywords

Navigation