Skip to main content

A numerical study on radial Hele-Shaw flow: influence of fluid miscibility and injection scheme

Abstract

Fingering instability triggered by injection of a less viscous fluid in a Hele-Shaw cell is numerically investigated. Simulations are based on a diffuse-interface method, and the formulation, capable of dealing with immiscible and miscible interfaces, is presented in details. Three miscibility conditions, including immiscible with surface tension, partially miscible with effective interfacial tension and fully miscible without interfacial stresses, are simulated to verify generality of an optimal linear injection scheme proposed by Dias et al. (Phys Rev Lett 109:144502, 2012) in the limit of infinite viscosity contrast. stabilizing effects of this linear injection scheme are universally confirmed for the interfaces with the presence of interfacial stresses, such as immiscible and partially miscible conditions. On the other hand, the linear injection scheme in a fully miscible interface leads to contradictory results. Even the fingering pattern appears qualitatively more stable without the secondary phenomenon of finger merging, relevant quantitative measurements, such as longer channeling zone and interfacial length, indicate enhancement of fingering prominence. The inconsistent behaviors suggest that the coupling effects with the interfacial stresses are crucial in the applications of the optimal linear injection scheme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Saffman PG, Taylor GI (1958) The penetration of a fluid into porous medium or HeleShaw cell containing a more viscous liquid. Proc R Soc London Ser A 245:312–329

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Tefft B, Kopacz A, Liu WK, Liu SQ (2013) Experimental and computational validation of Hele-Shaw stagnation flow with varying shear stress. Comput Mech 52:1463–1473

    Article  MATH  Google Scholar 

  3. 3.

    Homsy GM (1987) Viscous lingering in porous media. Annu Rev Fluid Mech 9:271–311

    Article  Google Scholar 

  4. 4.

    McCloud KV, Maher JV (1995) Experimental perturbations to Saffman-Taylor flow. Phys Rep 260:139–185

    Article  Google Scholar 

  5. 5.

    Paterson L (1981) Radial fingering in a Hele Shaw cell. J Fluid Mech 113:513–529

    Article  Google Scholar 

  6. 6.

    Chen JD (1987) Radial viscous fingering patterns in Hele-Shaw cells. Exp Fluids 5:363–371

    Article  Google Scholar 

  7. 7.

    Chen JD (1989) Growth of radial viscous fingers in a Hele-Shaw cell. J Fluid Mech 201:223–242

    Article  Google Scholar 

  8. 8.

    Thomé H, Rabaud M, Hakim V, Couder Y (1989) The Saffman-Taylor instability : from the linear to the circular geometry. Phys Fluids A1:224–240

    Article  Google Scholar 

  9. 9.

    Praud O, Swinney HL (2005) Fractal dimension and unscreened angles measured for radial viscous fingering. Phys Rev E 72:011406

    Article  Google Scholar 

  10. 10.

    Fast P, Shelley M (2006) Moore’s law and the SaffmanTaylor instability. J Comput Phys 212:1–5

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Mathiesen J, Procaccia I, Swinney HL, Thrasher M (2006) The universality class of diffusion limited aggregation and viscous fingering. Eur Phys Lett 76:257–263

    Article  Google Scholar 

  12. 12.

    Li S, Lowengrub JS, Leo PH (2007) A rescaling scheme with application to the long time simulation of viscous fingering in a Hele-Shaw cell. J Comput Phys 225:554–567

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Chen CY, Huang CW, Gadêlha H, Miranda J (2008) Radial viscous fingering in miscible Hele-Shaw flows: a numerical study. Phys Rev E 78:016306

    Article  Google Scholar 

  14. 14.

    Gorell S, Homsy GM (1983) A theory of the optimal policy of oil recovery by the secondary displacement process. SIAM J Appl Math 43:79–98

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    Chen CY, Meiburg E (1998) Miscible porous media flows in the quarter five-spot configuration. Part 1: the homogeneous case. J Fluid Mech 371:233–268

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Chen CY, Meiburg E (1998) Miscible porous media flows in the quarter five-spot configuration. Part 2: effect of heterogeneities. J Fluid Mech 371:269–299

    Article  MathSciNet  Google Scholar 

  17. 17.

    Philippe P, Chen CY, Meiburg E, Maxworthy T (1999) Miscible quarter five-spot displacements in a Hele-Shaw cell and the role of flow-induced dispersion. Phys Fluids 11:1705–1716

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Chen CY, Huang CW, Wang LC, Miranda J (2010) Controlling radial fingering patterns in miscible confined flows. Phys Rev E 82:56308

    Article  Google Scholar 

  19. 19.

    Li S, Lowengrub JS, Fontana J, Palffy-Muhoray P (2009) Control of viscous fingering patterns in a radial Hele-Shaw cell. Phys Rev Lett 102:174501

    Article  Google Scholar 

  20. 20.

    Leshchiner A, Thrasher M, Mineev-Weinstein M, Swinney HL (2010) Harmonic moment dynamics in Laplacian growth. Phys Rev E 81:016206

    Article  Google Scholar 

  21. 21.

    Dias EO, Miranda J (2010) Control of radial fingering patterns: a weakly nonlinear approach. Phys Rev E 81:016312

    Article  Google Scholar 

  22. 22.

    Yuan Q, Azaiez J (2014) Miscible displacements in porous media with time-dependent injection velocities. Trans Porous Med 104:57–76

    Article  MathSciNet  Google Scholar 

  23. 23.

    Yuan Q, Azaiez J (2014) Cyclic time-dependent reactive flow displacements in porous media. Chem Eng Sci 109:136–146

    Article  Google Scholar 

  24. 24.

    Dias EO, Alvarez-Lacalle E, Carvalho MS, Miranda J (2012) Minimization of viscous fluid fingering: a variational scheme for optimal flow rates. Phys Rev Lett 109:144502

    Article  Google Scholar 

  25. 25.

    Coutinho ALGA, Alves J (1999) Finite element simulation of nonlinear viscous fingering in miscible displacements with anisotropic dispersion and nonmonotonic viscosity profiles. Comput Mech 23:108–116

    Article  MATH  Google Scholar 

  26. 26.

    Sesini PA, de Souza DAF, Coutinho ALGA (2010) Finite element simulation of viscous fingering in miscible displacements at high mobility-ratios. J Braz Soc Mech Sci Eng XXXII:292–299

    Article  Google Scholar 

  27. 27.

    Zimmerman W, Homsy GM (1991) Nonlinear viscous fingering in miscible displacements with anisotropic dispersion. Phys Fluids A 3:1859–1872

    Article  Google Scholar 

  28. 28.

    Zimmerman W, Homsy GM (1992) Three-dimensional viscous fingering: a numerical study. Phys Fluids A 4:1901–1914

    Article  MATH  Google Scholar 

  29. 29.

    Brooks AN, Hughes T (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  30. 30.

    Tezduyar TE, Glowinski R, Liou J (1988) Petrov-Galerkin methods on multiply connected domains for the vorticity-stream function formulation of the incompressible Navier-Stokes equations. Int J Numer Methods Fluids 8:1269–1290

    Article  MATH  MathSciNet  Google Scholar 

  31. 31.

    Tezduyar TE, Liou J, Ganjoo DK (1990) Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations. Comput Struct 35:445–472

    Article  MATH  Google Scholar 

  32. 32.

    Tezduyar TE, Liou J (1991) On the downstream boundary conditions for the vorticity-stream function formulation of two-dimensional incompressible flows. Comput Methods Appl Mech Eng 85:207–217

    Article  MATH  Google Scholar 

  33. 33.

    Lee HG, Lowengrub J, Goodman J (2002) Modelling pinchoff and reconnection in a Hele-Shaw cell part I: the models and their calibration. Phys Fluids 14:492–513

    Article  MathSciNet  Google Scholar 

  34. 34.

    Lee HG, Lowengrub J, Goodman J (2002) Modelling pinchoff and reconnection in a Hele-Shaw cell part II: analysis and simulation in the nonlinear regime. Phys Fluids 14:514–545

    Article  MathSciNet  Google Scholar 

  35. 35.

    Glasner C (2003) A diffuse interface approach to Hele-Shaw flow. Nonlinearity 16:49–66

    Article  MATH  MathSciNet  Google Scholar 

  36. 36.

    Chen CY, Huang YS, Miranda J (2011) Diffuse-interface approach to rotating Hele-Shaw flows. Phys Rev E 84:046302

    Article  Google Scholar 

  37. 37.

    Chen CY, Huang YS, Miranda J (2014) Radial Hele-Shaw flow with suction: fully nonlinear pattern formation. Phys Rev E 89:053006

    Article  Google Scholar 

  38. 38.

    Davis H (1988) A theory of tension at a miscible displacement front. IMA volumes in mathematics and Its applications, 11th edn. Springer, Berlin, pp 105–110

  39. 39.

    Hu H, Joseph D (1992) Miscible displacement in a Hele-Shaw cell. ZAMP 43:626–644

    Article  MATH  MathSciNet  Google Scholar 

  40. 40.

    Chen CY, Wang LL, Meiburg E (2001) Miscible droplets in a porous medium and the effect of Korteweg stresses. Phys Fluids 13:2447–2456

    Article  Google Scholar 

  41. 41.

    Chen CY, Chen CH, Miranda J (2005) Numerical study of miscible fingering in a time-dependent gap Hele-Shaw cell. Phys Rev E 71:056304

    Article  Google Scholar 

  42. 42.

    Chen CY, Chen CH, Miranda J (2006) Numerical study of pattern formation in miscible rotating Hele-Shaw flows. Phys Rev E 73:046306

    Article  Google Scholar 

  43. 43.

    Meiburg E, Chen CY (2000) High-accuracy implicit finite-difference simulations of homogeneous and heterogeneous miscible porous medium flows. SPE J 5:129–137

    Article  Google Scholar 

  44. 44.

    Ruith M, Meiburg E (2000) Miscible rectilinear displacements with gravity override. Part 1: homogeneous porous medium. J Fluid Mech 420:-225258

    Google Scholar 

  45. 45.

    Lowengrub J, Truskinovsky L (1998) Quasi-incompressible Cahn Hilliard fluids. Proc R Soc London Ser A 454:2617–2654

    Article  MATH  MathSciNet  Google Scholar 

  46. 46.

    Yue PT, Feng J, Liu C, Shen J (2004) A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech 515:293–317

  47. 47.

    Chen CY, Liu KT (2007) Numerical Simulations of a Miscible Drop in a Spinning Drop Tensiometer. J Mech 23:1–7

    Article  Google Scholar 

  48. 48.

    Härtel C, Meiburg E, Necker F (2000) Analysis and direct numerical simulation of the flow at a gravity current head. Part 1: flow topology and front speed for slip and no-slip boundaries. J Fluid Mech 418:189–212

    Article  MATH  MathSciNet  Google Scholar 

  49. 49.

    Chui J, De Anna P, Huanes R (2014) The impact of miscible viscous fingering on mixing. Bull Am Phys Soc 59(20):160

    Google Scholar 

Download references

Acknowledgments

Support by NSC 101-2221-E-009-033-MY3 is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ching-Yao Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, YS., Chen, CY. A numerical study on radial Hele-Shaw flow: influence of fluid miscibility and injection scheme. Comput Mech 55, 407–420 (2015). https://doi.org/10.1007/s00466-014-1111-4

Download citation

Keywords

  • Instability
  • Finite differences
  • Numerical methods
  • Interaction behavior
  • Interface