Skip to main content
Log in

An integrated method for the transient solution of reduced order models of geometrically nonlinear structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

For repeated transient solutions of geometrically nonlinear structures, the numerical effort often poses a major obstacle. Thus it may become necessary to introduce a reduced order model which accelerates the calculations considerably while taking into account the nonlinear effects of the full order model in order to maintain accuracy. This work yields an integrated method that allows for rapid, accurate and parameterisable transient solutions. It is applicable if the structure is discretised in time and in space and its dynamic equilibrium described by a matrix equation. The projection on a reduced basis is introduced to obtain the reduced order model. Three approaches, each responding to one of the requirements of rapidity, accuracy and parameterisation, are united to form the integrated method. The polynomial formulation of the nonlinear terms renders the solution of the reduced order model autonomous from the finite element formulation and ensures a rapid solution. The update and augmentation of the reduced basis ensures the accuracy, because the simple introduction of a constant basis seems to be insufficient to account for the nonlinear behaviour. The interpolation of the reduced basis allows adapting the reduced order model to different external parameters. A Newmark-type algorithm provides the backbone of the integrated method. The application of the integrated method on test-cases with geometrically nonlinear finite elements confirms that this method enables a rapid, accurate and parameterisable transient solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  2. Amsallem D, Cortial J, Carlberg K, Farhat C (2009) A method for interpolating on manifolds structural dynamics reduced-order models. Int J Numer Methods Eng 80:1241–1258

    Article  MATH  Google Scholar 

  3. Amsallem D, Farhat C (2008) Interpolation method for the adaptation of reduced-order models to parameter changes and its application to aeroelasticity. AIAA J 46:1803–1813

    Article  Google Scholar 

  4. Argyris JH, Mlejnek HP (1991) Dynamics of structures. North Holland, New York

    MATH  Google Scholar 

  5. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  6. Besselink B, Tabak U, Lutowska A, van de Wouw N, Nijmeijer H, Rixen D, Hochstenbach M, Schilders W (2013) A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. J Sound Vib 332(19):4403–4422. doi:10.1016/j.jsv.2013.03.025

    Article  Google Scholar 

  7. Bui-Thanh T, Willcox K, Ghattas O, van Bloemen Waanders B (2007) Goal-oriented, model-constrained optimization for reduction of large-scale systems. J Comput Phys 224(2):880–896. doi:10.1016/j.jcp.2006.10.026

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang YW, Wang X, Capiez-Lernout E, Mignolet MP, Soize C (2011) Reduced order modeling for the nonlinear geometric response of some curved structures. In: International forum of aeroelasticity & structural dynamics (IFASD), Paris

  9. Ewins DJ (2000) Modal testing, theory, practice and application, 2nd edn. Research Study Press LTD, Baldock

    Google Scholar 

  10. Feeny BF, Liang Y (2003) Interpreting proper orthogonal modes of randomly excited vibration systems. J Sound Vib 265(5):953–966. doi:10.1016/S0022-460X(02)01265-8

    Article  Google Scholar 

  11. Galbally D, Fidkowski K, Willcox K, Ghattas O (2010) Non-linear model reduction for uncertainty quantification in large-scale inverse problems. Int J Numer Methods Eng 81(12):1581–1608. doi:10.1002/nme.2746

    MATH  MathSciNet  Google Scholar 

  12. Grolet A, Thouverez F (2012) On the use of the proper generalised decomposition for solving nonlinear vibration problems. In: ASME 2012 international mechanical engineering congress & exposition, IMECE, Houston

  13. Hackbusch W (2012) Tensor spaces and numerical tensor calculus. Springer, Heidelberg

    Book  MATH  Google Scholar 

  14. Hadigol M, Doostan A, Matthies HG, Niekamp R (2013) Partitioned treatment of uncertainty in coupled domain problems: a separated representation approach. http://arxiv.org/abs/1305.6818v1. Retrieved 8 Nov 2013

  15. Har J, Tamma KK (2012) Advances in computational dynamics. Wiley, New York

    MATH  Google Scholar 

  16. Hay A, Borggaard J, Akhtar I, Pelletier D (2010) Reduced-order models for parameter dependent geometries based on shape sensitivity analysis. J Comput Phys 229(4):1327–1352. doi:10.1016/j.jcp.2009.10.033

    Article  MATH  MathSciNet  Google Scholar 

  17. Hay A, Borggaard JT, Pelletier D (2009) Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. J Fluid Mech 629:41–72

    Article  MATH  MathSciNet  Google Scholar 

  18. Hemez FM, Doebling SW (2001) Review and assessment of model updating for non-linear, transient dynamics. Mech Syst Signal Process 15(1):45–74. doi:10.1006/mssp.2000.1351

    Article  Google Scholar 

  19. Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292

    Article  Google Scholar 

  20. Hollkamp JJ, Gordon RW, Spottswood SM (2005) Nonlinear modal models for sonic fatigue response prediction: a comparison of methods. J Sound Vib 284(3–5):1145–1163. doi:10.1016/j.jsv.2004.08.036

    Article  Google Scholar 

  21. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    Google Scholar 

  22. Idelsohn SR, Cardona A (1985) A load-dependent basis for reduced nonlinear structural dynamics. Comput Struct 20(1–3):203–210. doi:10.1016/0045-7949(85)90069-0

    Article  MATH  Google Scholar 

  23. Krenk S (2009) Non-linear modeling and analysis of solids and structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Lülf FA, Tran DM, Ohayon R (2013) Reduced bases for nonlinear structural dynamic systems: a comparative study. J Sound Vib 332:3897–3921

    Article  Google Scholar 

  25. Matthies HG, Strang G (1979) The solution of nonlinear finite element equations. Int J Numer Methods Eng 14:1613–1626

    Article  MATH  MathSciNet  Google Scholar 

  26. Mignolet MP, Przekop A, Rizzi SA, Spottswood SM (2013) A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J Sound Vib 332(10):2437–2460. doi:10.1016/j.jsv.2012.10.017

    Article  Google Scholar 

  27. Mignolet MP, Soize C (2008) Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems. Comput Methods Appl Mech Eng 197:3951–3963. doi:10.1016/j.cma.2008.03.032

    Article  MATH  MathSciNet  Google Scholar 

  28. Muravyov AA, Rizzi SA (2003) Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures. Comput Struct 81(15):1513–1523. doi:10.1016/S0045-7949(03)00145-7

    Article  Google Scholar 

  29. Newmark NM (1962) A method of computation for structural dynamics. Trans Am Soc Civ Eng 127(1):1406–1432

    Google Scholar 

  30. Nickell R (1976) Nonlinear dynamics by mode superposition. Comput Methods Appl Mechanics Eng 7(1):107–129. doi:10.1016/0045-7825(76)90008-6

    Article  MATH  MathSciNet  Google Scholar 

  31. Noor AK (1981) Recent advances in reduction methods for nonlinear problems. Comput Struct 13(1–3):31–44. doi:10.1016/0045-7949(81)90106-1

    Article  MATH  Google Scholar 

  32. Phillips JR (2003) Projection-based approaches for model reduction of weakly nonlinear, time-varying systems. IEEE Trans Comput Aided Des Integr Circuits Syst 22(2):171–187

    Article  Google Scholar 

  33. Reichel L (1985) On polynomial approximation in the complex plane with application to conformal mapping. Math Comput 44:425–433

    Article  MATH  MathSciNet  Google Scholar 

  34. Späth H (1995) Two dimensional spline interpolation algorithms. A.K. Peters, Ltd., Wellesley

    MATH  Google Scholar 

  35. Spottswood S, Allemang R (2006) Identification of nonlinear parameters for reduced order models. J Sound Vib 295(1–2):226–245. doi:10.1016/j.jsv.2006.01.009

  36. Strang G (2006) Linear algebra and its applications, 2nd edn. Thomson, Belmont

  37. Tran DM (2009) Component mode synthesis methods using partial interface modes: application to tuned and mistuned structures with cyclic symmetry. Comput Struct 87:1141–1153

    Article  Google Scholar 

  38. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  39. Zienkiewicz O, Taylor R, Zhu J (2005) The finite element method: its basis and fundamentals. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

The fourth author gratefully acknowledges the support of Alexander von Humboldt Foundation through a Gay Lussac Research Award received in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Adrian Lülf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lülf, F.A., Tran, DM., Matthies, H.G. et al. An integrated method for the transient solution of reduced order models of geometrically nonlinear structures. Comput Mech 55, 327–344 (2015). https://doi.org/10.1007/s00466-014-1103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1103-4

Keywords

Navigation