Skip to main content
Log in

A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Today industries do not only require fast simulation techniques but also verification techniques for the simulations. The proper generalized decomposition (PGD) has been situated as a suitable tool for fast simulation for many physical phenomena. However, so far, verification tools for the PGD are under development. The PGD approximation error mainly comes from two different sources. The first one is related with the truncation of the PGD approximation and the second one is related with the discretization error of the underlying numerical technique. In this work we propose a fast error indicator technique based on recovery techniques, for the discretization error of the numerical technique used by the PGD technique, for refinement purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176

    Article  MATH  Google Scholar 

  2. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. J Non-Newton Fluid Mech 144:98–121

    Article  MATH  Google Scholar 

  3. Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404

    Article  Google Scholar 

  4. Giner E, Bognet B, Ródenas JJ, Leygue A, Fuenmayor FJ, Chinesta F (2013) The proper generalized decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics. Int J Solids Struct 50:1710–1720

    Article  Google Scholar 

  5. Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newton Fluid Mech 166(11):578–592

    Article  MATH  Google Scholar 

  6. Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199(25–28):1872–1880

    Article  MathSciNet  MATH  Google Scholar 

  7. Moitinho de Almeida JP (2013) A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics. Int J Numer Methods Eng 94:961–984

    Article  MathSciNet  Google Scholar 

  8. Ladevèze P, Chamoin L (2011) On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 200:2032–2047

    Article  MATH  Google Scholar 

  9. Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509

    Article  MathSciNet  MATH  Google Scholar 

  10. Babuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615

    Article  MATH  Google Scholar 

  11. Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727

    Article  MATH  Google Scholar 

  12. Díez P, Parés N, Huerta A (2003) Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates. Int J Numer Methods Eng 56(10):1465–1488

    Article  MATH  Google Scholar 

  13. Bognet B, Bordeu F, Chinesta F, Leygue A, Poitou A (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201–204:1–12

    Article  Google Scholar 

  14. Bognet B, Leygue A, Chinesta F (2014) Separated representations of 3D elastic solutions in shell geometries. Adv Model Simul Eng Sci 1(1):1–4

    Article  Google Scholar 

  15. Ghnatios C, Chinesta F, Binetruy C (2013) 3D modeling of squeeze flows occurring in composite laminates. Int J Mater Form 9(1):1–11

    Google Scholar 

  16. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357

    Article  MathSciNet  MATH  Google Scholar 

  17. Chinesta F, Keunings R, Leygue A (2013) The proper generalized decomposition for advanced numerical simulations: a primer. Springer Publishing Company, New York Incorporated

    Google Scholar 

  18. Donea J, Huerta A (2002) Finite element methods for flow problems. Wiley, New York

    Google Scholar 

  19. Gonzalez D, Cueto E, Chinesta F, Diez P, Huerta A (2013) SUPG-based stabilization of proper generalized decompositions for high-dimensional advection-diffusion equations. Int J Numer Methods Eng 94(13):1216–1232

    Article  MathSciNet  Google Scholar 

  20. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

  21. Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20:31–59

  22. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng 33(7):1331–1364

    Article  MathSciNet  MATH  Google Scholar 

  23. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Eng 33(7):1365–1382

    Article  MathSciNet  MATH  Google Scholar 

  24. Kvamsdal T, Okstad KM (1998) Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int J Numer Methods Eng 42(3):443–472

    Article  MathSciNet  MATH  Google Scholar 

  25. Wiberg NE, Abdulwahab F (1993) Patch recovery based on superconvergent derivatives and equilibrium. Int J Numer Methods Eng 36(16):2703–2724

    Article  MathSciNet  MATH  Google Scholar 

  26. Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37(20):3417–3440

    Article  MathSciNet  MATH  Google Scholar 

  27. Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3):517–536

    Article  MathSciNet  MATH  Google Scholar 

  28. Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4):545–571

    Article  MATH  Google Scholar 

  29. Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40):2607–2621

    Article  MATH  Google Scholar 

  30. Nadal E, (2014) Cartesian grid FEM (cgFEM): high performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization. PhD thesis, Universitat Politècnica de València

  31. Karihaloo BL, Xiao QZ (2003) Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput Struct 81(3):119–129

    Article  Google Scholar 

  32. González-Estrada OA, Ródenas JJ, Chinesta F, Fuenmayor FJ (2013) Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM. Comput Mech 52:321–344

    Article  MathSciNet  MATH  Google Scholar 

  33. Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element mehod. Int J Numer Methods Eng 39(23):4039–4061

    Article  MATH  Google Scholar 

  34. Fuenmayor F, Restrepo J, Tarancón J, Baeza L (2001) Error estimation and h-adaptive refinement in the analysis of natural frequencies. Finite Elem Anal Des 38:137–153

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Authors 5 and 6 thank the financial support of the research Project DPI2013-46317-R of the Ministerio de Economía y Competitividad (Spain). The funding from Universitat Politècnica de València and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged. These authors also thank the support of the Framework Programme 7 Initial Training Network Funding under Grant number 289361 “Integrating Numerical Simulation and Geometric Design Technology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Nadal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadal, E., Leygue, A., Chinesta, F. et al. A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework. Comput Mech 55, 251–266 (2015). https://doi.org/10.1007/s00466-014-1097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1097-y

Keywords

Navigation