Experimental and numerical FSI study of compliant hydrofoils

Abstract

A propulsion system based on tandem hydrofoils is studied experimentally and numerically. An experimental measurement system is developed to extract hydrodynamic loads on the foils and capture their twisting deformation during operation. The measured data allowed us to assess the efficiency of the propulsion system as a function of travel speed and stroke frequency. The numerical simulation of the propulsion system is also presented and involves 3D, full-scale fluid–structure interaction (FSI) computation of a single (forward) foil. The foil is modeled as a combination of the isogeometric rotation-free Kirchhoff–Love shell and bending-stabilized cable, while the hydrodynamics makes use of the finite-element-based arbitrary Lagrangian–Eulerian variational multiscale formulation. The large added mass is handled through a quasi-direct FSI coupling technique. The measurement data collected is used in the validation of the FSI simulation, and excellent agreement is achieved between the predicted and measured hydrodynamic loads and foil twisting motion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Augier B, Bot P, Hauville F, Durand M (2012) Experimental validation of unsteady models for fluid structure interaction: application to yacht sails and rigs. J Wind Eng Ind Aerodyn 101:53–66

    Article  Google Scholar 

  2. 2.

    Augier B, Bot P, Hauville F, Durand M (2013) Dynamic behavior of a flexible yacht sail plan. Ocean Eng 66:32–43

    Article  Google Scholar 

  3. 3.

    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235

    MATH  Article  Google Scholar 

  5. 5.

    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253

    MATH  Article  Google Scholar 

  7. 7.

    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE–VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Methods Appl Sci 22(supp02):1230002

    Article  Google Scholar 

  9. 9.

    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498

    Article  Google Scholar 

  10. 10.

    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16

    MATH  MathSciNet  Article  Google Scholar 

  11. 11.

    Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26

    MATH  MathSciNet  Article  Google Scholar 

  12. 12.

    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) Fluid–structure interaction modeling of vertical-axis wind turbines. J Appl Mech 81(8):081006

    Article  Google Scholar 

  14. 14.

    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790

    MATH  MathSciNet  Article  Google Scholar 

  16. 16.

    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221

    MATH  MathSciNet  Article  Google Scholar 

  17. 17.

    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, New York

    Google Scholar 

  18. 18.

    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    Google Scholar 

  19. 19.

    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics withimproved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375

    MATH  MathSciNet  Article  Google Scholar 

  20. 20.

    Combes SA, Daniel TL (2001) Shape, flapping and flexion: wing and fin design for forward flight. J Exp Biol 204(12):2073–2085

    Google Scholar 

  21. 21.

    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Google Scholar 

  22. 22.

    Dabiri JO (2011) Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J Renew Sustain Energy 3:043104

    Article  Google Scholar 

  23. 23.

    Fish FE (1999) Performance constraints on the maneuverability of flexible and rigid biological systems. In: International symposium on unmanned unthethered submersible technology, University of New Hampshire-Marine Systems, 1999, pp 394–406

  24. 24.

    Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100

    MATH  MathSciNet  Article  Google Scholar 

  25. 25.

    Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50:499–511. doi:10.1007/s00466-012-0686-x

    MATH  MathSciNet  Article  Google Scholar 

  26. 26.

    Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481

    Article  Google Scholar 

  27. 27.

    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599

    MathSciNet  Article  Google Scholar 

  28. 28.

    Hsu M-C, Bazilevs Y (2012) Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833

    MATH  MathSciNet  Article  Google Scholar 

  29. 29.

    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    MATH  MathSciNet  Article  Google Scholar 

  30. 30.

    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    MATH  MathSciNet  Article  Google Scholar 

  31. 31.

    Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319

    MATH  MathSciNet  Article  Google Scholar 

  32. 32.

    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94

    MATH  Article  Google Scholar 

  33. 33.

    Karypis G, Kumar V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392

    MATH  MathSciNet  Article  Google Scholar 

  34. 34.

    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    MATH  Article  Google Scholar 

  35. 35.

    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914

    MATH  Article  Google Scholar 

  36. 36.

    Koochesfahani MM (1989) Vortical patterns in the wake of an oscillating airfoil. AIAA J 27(9):1200–1205

    Article  Google Scholar 

  37. 37.

    Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81(2):021011

    MathSciNet  Article  Google Scholar 

  38. 38.

    Korobenko A, Hsu MC, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and fsi simulation of wind turbines. Math Models Methods Appl Sci 23:249–272

    MATH  MathSciNet  Article  Google Scholar 

  39. 39.

    Lai SJC, Platzer MF (1999) Jet characteristics of a plunging airfoil. AIAA J 37(12):1529–1537

    Article  Google Scholar 

  40. 40.

    Leroyer A, Visonneau M (2005) Numerical methods for RANSE simulations of a self-propelled fish-like body. J Fluids Struct 20(7):975–991

    Article  Google Scholar 

  41. 41.

    Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911–919

    MATH  MathSciNet  Article  Google Scholar 

  42. 42.

    Long CC, Hsu M-C, Bazilevs Y, Feinstein JA, Marsden AL (2012) Fluid–structure interaction simulations of the Fontan procedure using variable wall properties. Int J Numer Methods Biomed Eng 28:512–527

    MathSciNet  Article  Google Scholar 

  43. 43.

    Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981

    MATH  Article  Google Scholar 

  44. 44.

    Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932

    MATH  MathSciNet  Article  Google Scholar 

  45. 45.

    Mountcastle AM, Daniel TL (2009) Aerodynamic and functional consequences of wing compliance. Exp Fluid 46(5):873–882

    Article  Google Scholar 

  46. 46.

    Peters T (2010) Hobie kayak mirage drive tow tank testing. Report: Departement of Naval Architecture & Marine Engineering, University of Michigan 1:1–7

  47. 47.

    Raknes SB, Deng X, Bazilevs Y, Benson DJ, Mathisen KM, Kvamsdal T (2013) Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput Methods Appl Mech Eng 263:127–143

    MATH  MathSciNet  Article  Google Scholar 

  48. 48.

    Read DA, Hover FS, Triantafyllou MS (2003) Forces on oscillating foils for propulsion and maneuvering. J Fluids Struct 17(1):163–183

    Article  Google Scholar 

  49. 49.

    Schouveiler L, Hover FS, Triantafyllou MS (2005) Performance of flapping foil propulsion. J Fluids Struct 20(7):949–959

    Article  Google Scholar 

  50. 50.

    Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46(7):284–327

    Article  Google Scholar 

  51. 51.

    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63

    MATH  Article  Google Scholar 

  52. 52.

    Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035–1045

    MATH  Article  Google Scholar 

  53. 53.

    Takizawa K (2014) Computational engineering analysis with the new-generation space–time methods. Comput Mech 54:193–211

    MATH  MathSciNet  Article  Google Scholar 

  54. 54.

    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE–VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225

    MathSciNet  Article  Google Scholar 

  55. 55.

    Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE–VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486

    MATH  MathSciNet  Article  Google Scholar 

  56. 56.

    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101–116

    MATH  Article  Google Scholar 

  57. 57.

    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760

    MATH  Article  Google Scholar 

  58. 58.

    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134

    MATH  MathSciNet  Article  Google Scholar 

  59. 59.

    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778

    MATH  Article  Google Scholar 

  60. 60.

    Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338

    MATH  MathSciNet  Article  Google Scholar 

  61. 61.

    Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013) Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248

    MATH  MathSciNet  Article  Google Scholar 

  62. 62.

    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308–323

    MATH  Article  Google Scholar 

  63. 63.

    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073

    MATH  MathSciNet  Article  Google Scholar 

  64. 64.

    Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364

    MATH  Article  Google Scholar 

  65. 65.

    Takizawa K, Takagi H, Tezduyar TE, Torii R (2014) Estimation of element-based zero-stress state for arterial FSI computations. Comput Mech 54:895–910

    MATH  MathSciNet  Article  Google Scholar 

  66. 66.

    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267

    MATH  MathSciNet  Article  Google Scholar 

  67. 67.

    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169

    MathSciNet  Article  Google Scholar 

  68. 68.

    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001

  69. 69.

    Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364

    MATH  Article  Google Scholar 

  70. 70.

    Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203–1220

    MATH  MathSciNet  Article  Google Scholar 

  71. 71.

    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time fluid mechanics computation of heart valve models. Comput Mech 54:973–986

    MATH  MathSciNet  Article  Google Scholar 

  72. 72.

    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971

    MATH  MathSciNet  Article  Google Scholar 

  73. 73.

    Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech, published online, doi:10.1007/s00466-014-1069-2

  74. 74.

    Takizawa K, Tezduyar TE, Kostov N (2014) Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233

    MATH  MathSciNet  Article  Google Scholar 

  75. 75.

    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15

    MATH  Article  Google Scholar 

  76. 76.

    Takizawa K, Torii R, Takagi H, Tezduyar TE, Xu XY (2014) Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Comput Mech 54:1047–1053

    MATH  Article  Google Scholar 

  77. 77.

    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65:286–307

    MATH  Article  Google Scholar 

  78. 78.

    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36

    Article  Google Scholar 

  79. 79.

    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130

    MATH  Article  Google Scholar 

  80. 80.

    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods - space–time formulations, iterative strategies and massively parallel implementations. In: New Methods in Transient Analysis, PVP-Vol. 246/AMD-Vol.143. ASME, New York, 1992, pp 7–24

  81. 81.

    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900

    MATH  MathSciNet  Article  Google Scholar 

  82. 82.

    Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space-time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III international congress on numerical methods in engineering and applied science. CD-ROM, Monterrey, Mexico

  83. 83.

    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027

    MATH  MathSciNet  Article  Google Scholar 

  84. 84.

    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49

    MATH  Article  Google Scholar 

  85. 85.

    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195:5743–5753

    MATH  MathSciNet  Article  Google Scholar 

  86. 86.

    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524–3533

    MATH  MathSciNet  Article  Google Scholar 

  87. 87.

    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665–1710

    MATH  MathSciNet  Article  Google Scholar 

  88. 88.

    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29

    MATH  MathSciNet  Article  Google Scholar 

  89. 89.

    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218

    MATH  Article  Google Scholar 

  90. 90.

    Wakeling JM, Ellington CP (1997) Dragonfly flight. ii. velocities, accelerations and kinematics of flapping flight. J Exp Biol 200(3):557–582

    Google Scholar 

  91. 91.

    Wang ZJ, Russell D (2007) Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys Rev Lett 99(14):148101

    Article  Google Scholar 

Download references

Acknowledgments

J. Yan and Y. Bazilevs were partially supported by the NSF CAREER Award OCI-1055091.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Bazilevs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Augier, B., Yan, J., Korobenko, A. et al. Experimental and numerical FSI study of compliant hydrofoils. Comput Mech 55, 1079–1090 (2015). https://doi.org/10.1007/s00466-014-1090-5

Download citation

Keywords

  • Propulsion
  • Thrust
  • Compliant hydrofoils
  • Fluid–structure interaction
  • Isogeometric analysis
  • ALE–VMS