Skip to main content
Log in

Wave propagation through periodic lattice with defects

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The discrete periodic lattice of masses and springs with line and point defects is considered. The matrix integral equations of a special form are solved explicitly to obtain the Floquet–Bloch dispersion spectra for propagative, guided and localised waves. Explicit form of the dispersion equations makes possible detailed analysis of the position and other characteristics of the spectra. For example in the case of the uniform lattice with one line inclusion along with one single defect we obtain the sharp explicit upper bound \(\frac{3}{4}-\frac{1}{2\pi }\) for the mass of single defect for which there exist localised waves in the spectral gaps. The developed method can be applied to various problems in optics, solid-state physics, or electronics in which lattice defects play a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torrent D, Mayou D, Sanchez-Dehesa J (2013) Elastic analog of graphene: dirac cones and edge states for flexural waves in thin plates. Phys Rev B 87(11):115143

    Article  Google Scholar 

  2. Coatleven J (2012) Helmholtz equation in periodic media with a line defect. J Comput Phys 231:1675–1704

    Article  MATH  MathSciNet  Google Scholar 

  3. Yao Z-J, Yu G-L, Wang Y-S, Shi Z-F (2009) Propagation of bending waves in phononic crystal thin plates with a point defect. Int J Solids Struct 46(11):2571–2576

    Article  MATH  Google Scholar 

  4. Pennec Y, Vasseur JO, Djafari-Rouhani B, Dobrzyn’ski L, Deymier PA (2010) Two-dimensional phononic crystals: examples and applications. Surf Sci Rep 65:229–291

    Article  Google Scholar 

  5. Yamada K (2011) Silicon photonic wire waveguides: fundamentals and applications. Top Appl Phys 119:1–29

    Article  Google Scholar 

  6. Publisher: InTech, Recent optical and photonic technologies, ISBN 978-953-7619-71-8 (2010), p 450

  7. Terrones H, Ruitao LV, Terrones M, Dresselhaus MS (2012) The role of defects and doping in 2d graphene sheets and 1d nanoribbons. Rep Prog Phys 75:062501

    Article  Google Scholar 

  8. Maradudin AA (1965) Some effects of point defects on the vibrations of crystal lattices. Rep Prog Phys 28:331–380

    Article  Google Scholar 

  9. Osharovich GG, Ayzenberg-Stepanenko MV (2012) Wave localization in stratified square-cell lattices: the antiplane problem. J Sound Vib 331:1378–1397

    Article  Google Scholar 

  10. Movchan AB, Slepyan LI (2007) Band gap Green’s functions and localized oscillations. Proc R Soc A 463:2709–2727

  11. Zalipaev VV, Movchan AB, Jones IS (2008) Waves in lattices with imperfect junctions and localised defect modes. Proc R Soc A 464:2037–2054

  12. Colquitt DJ, Nieves MJ, Jones IS, Movchan AB, Movchan NV (2013) Localization for a line defect in an infinite square lattice. Proc R Soc A 469(2150):20120579

  13. Makwana M, Craster RV (2013) Localised point defect states in asymptotic models of discrete lattices. Q J Mech Appl Math 66:289–316

    Article  MATH  MathSciNet  Google Scholar 

  14. Korotyaev EL, Kutsenko AA (2010) Zigzag nanoribbons in external electric and magnetic fields. Asymptot Anal 66:187–206

    MATH  MathSciNet  Google Scholar 

  15. Karpov EG, Wagner GJ, Liu Wing Kam (2005) A Green’s function approach to deriving non-reflecting boundary conditions in molecular dynamics simulations. Int J Numer Methods Eng 62:1250–1262

    Article  MATH  Google Scholar 

  16. Karpov EG, Park HS, Liu Wing Kam (2007) A phonon heat bath approach for the atomistic and multiscale simulation of solids. Int J Numer Methods Eng 70:351–378

    Article  MATH  MathSciNet  Google Scholar 

  17. Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech ASCE 135(3):117–131

    Article  Google Scholar 

  18. Berezovski A, Engelbrecht J, Maugin G (2009) One-dimensional microstructure dynamics. L N App C M 46:21–28

    Google Scholar 

  19. Vernerey F, Liu WK, Moran B (2007) Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 55(12):2603–2651

    Article  MATH  MathSciNet  Google Scholar 

  20. Martin PA (2006) Discrete scattering theory: Green’s function for a square lattice. Wave Motion 43:619–629

    Article  MATH  MathSciNet  Google Scholar 

  21. Kutsenko AA, Shuvalov AL (2013) Shear surface waves in phononic crystals. J Acoust Soc Am 133:653–660

    Article  Google Scholar 

  22. Korotyaeva ME, Kutsenko AA, Shuvalov AL, Poncelet O (2013) Love waves in two-dimensional phononic crystals with depth-dependent properties. Appl Phys Lett 103:111902

    Article  Google Scholar 

  23. Korotyaeva ME, Kutsenko AA, Shuvalov AL, Poncelet O (2014) Resolvent method for calculating dispersion spectra of the shear waves in the phononic plates and waveguides. J Comput Acoust 22(3):1450008

    Article  MathSciNet  Google Scholar 

  24. Brillouin L (2003) Wave propagation in periodic structures. Dover Publications Inc, New York

    Google Scholar 

  25. Sohn Y, Krishnaswamy S (2007) Mass spring lattice modeling of the scanning laser source technique. Ultrasonics 39(8):543–551

    Article  Google Scholar 

  26. Virieux J, Etienne V, Cruz-Atienza V, Brossier R, Chaljub E, Coutant O, Garambois S, Mercerat D, Prieux V, Operto S, Ribodetti A, Tago J (2012) Modelling seismic wave propagation for geophysical imaging. In: Seismic waves—research and analysis, InTech. doi:10.5772/30219

  27. Shuvalov AL, Kutsenko AA, Korotyaeva ME, Poncelet O (2013) Love waves in a coated vertically periodic substrate. Wave Motion 50(4):809–820

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to A. Shuvalov for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Kutsenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsenko, A.A. Wave propagation through periodic lattice with defects. Comput Mech 54, 1559–1568 (2014). https://doi.org/10.1007/s00466-014-1076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1076-3

Keywords

Navigation