Skip to main content
Log in

NURBS distance fields for extremely curved cracks

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes for the first time an intrinsic enrichment for extremely curved cracks in a meshfree framework. The unique property of the proposed method lies in the exact geometric representation of cracks using non-uniform rational B-splines (NURBS). A distance function algorithm for NURBS is presented, resulting in a spatial field which is simultaneously discontinuous over the (finite) curved crack and continuous all around the crack tips. Numerical examples show the potential of the proposed approach and illustrate its advantages with respect to other techniques usually employed to model fracture, including standard finite elements with remeshing and the extended finite element method. This work represents a further step in an ongoing effort in the community to integrate computer aided design with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Argon A (1959) Surface cracks on glass. Proc R Soc Lond A Math Phys Sci 250(1263):472–481

    Article  Google Scholar 

  2. Atluri S, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MATH  MathSciNet  Google Scholar 

  3. Barbieri E, Meo M (2012) A fast object-oriented Matlab implementation of the Reproducing Kernel Particle Method. Comput Mech 49(5):581–602

    Article  MATH  MathSciNet  Google Scholar 

  4. Barbieri E, Petrinic N (2013) Multiple crack growth and coalescence in meshfree methods with a distance function-based enriched kernel. In: Key engineering materials—Advances in crack growth modeling, TransTech Publications, p 170

  5. Barbieri E, Petrinic N (2014) Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods. Comput Mech 53(2):325–342

    Article  MATH  MathSciNet  Google Scholar 

  6. Barbieri E, Petrinic N, Meo M, Tagarielli V (2012) A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity. Int J Numer Methods Eng 90(2):177–195

    Article  MATH  MathSciNet  Google Scholar 

  7. Belytschko T, Gu L, Lu Y (1994a) Fracture and crack growth by element-free Galerkin methods. Model Simul Mater Sci Eng 2:519–534

    Article  Google Scholar 

  8. Belytschko T, Lu Y, Gu L (1994b) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MATH  MathSciNet  Google Scholar 

  9. Belytschko T, Lu Y, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315

    Article  Google Scholar 

  10. Brokenshire DR (1996) A study of torsion fracture tests. PhD thesis, Cardiff University

  11. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1):195–227

    Article  MATH  MathSciNet  Google Scholar 

  12. Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Numer Methods Eng 47(12):2039–2072

    Article  MATH  Google Scholar 

  13. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  14. Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48(12):1741–1760

    Article  MATH  Google Scholar 

  15. Duarte CA, Oden JT (1996) Hp clouds-an hp meshless method. Numer methods Partial Differ Equ 12(6):673–706

    Article  MATH  MathSciNet  Google Scholar 

  16. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1257–1275

    Article  MATH  Google Scholar 

  17. Fries T, Matthies H (2003) Classification and overview of meshfree methods. Brunswick, Institute of Scientific Computing, Technical University Braunschweig, Germany Informatikbericht Nr 3

  18. Goehring L, Clegg WJ, Routh AF (2011) Wavy cracks in drying colloidal films. Soft Matter 7(18):7984–7987

    Article  Google Scholar 

  19. Gosz M, Moran B (2002) An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Eng Fract Mech 69(3):299–319

    Article  Google Scholar 

  20. Griebel M, Schweitzer MA (eds) (2008) Meshfree methods for partial differential equations IV. In: Lecture notes in computational science and engineering, vol 65. Springer, Berlin

  21. Huerta A, Belytschko T, Fernández-Méndez S, Rabczuk T (2004) Meshfree methods. In: Encyclopedia of computational mechanics, Fundamentals, vol 1. Wiley, Chichester, pp 279–309

  22. Idelsohn SR, Oñate E, Calvo N, Del Pin F (2003) The meshless finite element method. Int J Numer Methods Eng 58(6):893–912

    Article  MATH  Google Scholar 

  23. Inoue K, Kikuchi Y, Masuyama T (2005) A NURBS finite element method for product shape design. J Eng Design 16(2):157–174

    Article  Google Scholar 

  24. Lazarus V, Pauchard L (2011) From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation. Soft Matter 7(6):2552–2559

    Article  Google Scholar 

  25. Legrain G (2013) A NURBS-enhanced extended finite element approach for unfitted CAD analysis. Comput Mech 52(4):913– 929

  26. Leung KT, Jozsa L, Ravasz M, Neda Z (2001) Pattern formation: spiral cracks without twisting. Nature 410(6825):166–166

    Article  Google Scholar 

  27. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995a) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu WK, Jun S, Zhang YI (1995b) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  29. Mirkhalaf M, Dastjerdi AK, Barthelat F (2014) Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat commun 5:3166

    Article  Google Scholar 

  30. Nam KH, Park IH, Ko SH (2012) Patterning by controlled cracking. Nature 485(7397):221–224

    Article  Google Scholar 

  31. Narendran V, Cleary MP (1984) Elastostatic interaction of multiple arbitrarily shaped cracks in plane inhomogeneous regions. Eng Fract Mech 19:481

    Article  Google Scholar 

  32. Neda Z, Jozsa L, Ravasz M et al (2002) Spiral cracks in drying precipitates. Phys Rev Lett 88(9):095,502

    Article  Google Scholar 

  33. Nguyen V, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods, a review and computer implementation aspects. Math Comput Simul 79:763–813

    Article  MATH  MathSciNet  Google Scholar 

  34. Oñate E, Idelsohn S, Zienkiewicz O, Taylor R (1996) A finite point method in computational mechanics. applications to convective transport and fluid flow. Int J Numer Methods Eng 39(22):3839–3866

    Article  MATH  Google Scholar 

  35. Piegl L, Tiller W (1995) The NURBS book. Springer-Verlag, London

    Book  MATH  Google Scholar 

  36. Qin Z, Pugno N, Buehler M (2014) Mechanics of fragmentation of crocodile skin and other thin films. Sci Rep 4:4966

    Google Scholar 

  37. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343

    Article  MATH  Google Scholar 

  38. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199(37):2437–2455

    Article  MATH  Google Scholar 

  39. Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press Inc, San Diego

    Google Scholar 

  40. Sendova M, Willis K (2003) Spiral and curved periodic crack patterns in sol–gel films. Appl Phys A 76(6):957–959

    Article  Google Scholar 

  41. Sevilla R, Fernández-Méndez S (2011) Numerical integration over 2D NURBS shaped domains with applications to NURBS-enhanced FEM. Finite Elem Anal Des 47(10):1209–1220

    Article  MathSciNet  Google Scholar 

  42. Sevilla R, Fernández-Méndez S, Huerta A (2011a) 3D-NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 88(2):103–125

    Article  MATH  Google Scholar 

  43. Sevilla R, Fernández-Méndez S, Huerta A (2011b) Comparison of high-order curved finite elements. Int J Numer Methods Eng 87(8):719–734

    Article  MATH  Google Scholar 

  44. Sevilla R, Fernández-Méndez S, Huerta A (2011c) NURBS-enhanced finite element method (NEFEM): a seamless bridge between CAD and FEM. Arch Comput Methods Eng 18(4):441–484

    Article  MathSciNet  Google Scholar 

  45. Simkins D (2012) Multi-scale structural mechanics for advanced aircraft design. J Nonlinear Syst Appl 3(1):41–45

  46. Simkins D, Li S (2006) Meshfree simulations of thermo-mechanical ductile fracture. Comput Mech 38(3):235–249

  47. Sukumar N (1998) The natural element method in solid mechanics. PhD thesis, Northwestern University

  48. Tada H, Paris P, Irwin G (2000) The stress analysis of cracks handbook. ASME, New York

    Book  Google Scholar 

  49. Walters MC, Paulino GH, Dodds RH (2005) Interaction integral procedures for 3-d curved cracks including surface tractions. Eng Fract Mech 72(11):1635–1663

    Article  Google Scholar 

  50. Wan N, Xu J, Lin T, Xu L, Chen K (2009) Observation and model of highly ordered wavy cracks due to coupling of in-plane stress and interface debonding in silica thin films. Phys Rev B 80(1):014,121

    Article  Google Scholar 

  51. Xia ZC, Hutchinson JW (2000) Crack patterns in thin films. J Mech Phys Solids 48(6):1107–1131

    Article  MATH  Google Scholar 

  52. Xie ZQ, Sevilla R, Hassan O, Morgan K (2013) The generation of arbitrary order curved meshes for 3D finite element analysis. Comput Mech 51(3):361–374

    Article  MATH  MathSciNet  Google Scholar 

  53. Xu XP, Needleman A (1995) Numerical simulations of dynamic crack growth along an interface. Int J Fract 74(4):289–324

    Article  Google Scholar 

  54. Yagawa G, Yamada T (1996) Free mesh method: a new meshless finite element method. Comput Mech 18(5):383–386

    Article  MATH  Google Scholar 

  55. Zhu T, Zhang JD, Atluri S (1998) A local boundary integral equation (lbie) method in computational mechanics, and a meshless discretization approach. Comput Mech 21(3):223–235

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Sevilla.

Appendices

Appendix 1: The RKPM approximation

This work considers the reproducing kernel particle method (RKPM) for the functional approximation, see [28]. This method can also be viewed as the result of applying a numerical quadrature to the continuous moving least squares approximation that is usually employed in other meshfree methods such as the element-free Galerkin method, see [8, 21] for more details.

The RKPM shape function associated to a particle \(\mathbf {x}_I \in \varOmega \) is given by

$$\begin{aligned} \phi _I(\mathbf {x}) = \omega (\mathbf {x}_I,\mathbf {x}) \mathbf {P}^T(\mathbf {x}) \mathbf {M}^{-1}(\mathbf {x}) \mathbf {P}(\mathbf {x}_I) \end{aligned}$$
(33)

where the weighting function is defined as

$$\begin{aligned} \omega (\mathbf {x}_I,\mathbf {x}) = \Delta V_I w \Big ( \frac{\mathbf {x}_I - \mathbf {x}}{\rho } \Big ) \end{aligned}$$
(34)

with \((\Delta V_I, \mathbf {x}_I)\) denoting the quadrature weights and points (particles), \(\mathbf {P}(\mathbf {x})\) denotes a complete basis of the subspace of polynomials of degree \(k\), \(\mathbf {P}(\mathbf {x}) = \{p_0(\mathbf {x}), p_1(\mathbf {x}), \cdots , p_k(\mathbf {x}) \}\), and \(\mathbf {M}\) is the so-called moment matrix

$$\begin{aligned} \mathbf {M}(\mathbf {x}) = \sum _{I\in \mathcal {S}_\mathbf {x}^{\rho }}\omega (\mathbf {x}_I,\mathbf {x}) \mathbf {P}(\mathbf {x}_I) \mathbf {P}^T(\mathbf {x}_I) \end{aligned}$$
(35)

where the index set \(\mathcal {S}_{\mathbf {x}}^{\rho }\) is defined in Eq. (23).

The moment matrix \(\mathbf {M}\) can also be viewed as a Gram matrix defined with a discrete scalar product

$$\begin{aligned} \langle u,v \rangle _\mathbf {x}= \sum _{I\in \mathcal {S}_\mathbf {x}^{\rho }}\omega (\mathbf {x}_I,\mathbf {x}) u(\mathbf {x}_I) v(\mathbf {x}_I) \end{aligned}$$
(36)

and, from a numerical point of view, it is convenient to work with a centred and scaled version to enhance the condition number of the system of normal equations. This correction implies that the following definition of \(\mathbf {M}\) is adopted here

$$\begin{aligned} \mathbf {M}(\mathbf {x}) = \sum _{I\in \mathcal {S}_\mathbf {x}^{\rho }}\omega (\mathbf {x}_I,\mathbf {x}) \mathbf {P}\Big ( \frac{\mathbf {x}_I - \mathbf {x}}{\rho } \Big ) \mathbf {P}^T\Big ( \frac{\mathbf {x}_I - \mathbf {x}}{\rho } \Big ) \end{aligned}$$
(37)

where \(\rho \) denotes the average of all the compact support radii.

The continuity properties of the RKPM shape functions are clearly linked to the continuity properties of the function \(w\) in Eq. (34), see [17], which is usually referred as the kernel of the approximation. This work considers the so-called 2k-th order spline, which is the \(C^{k-1}\) function given by

$$\begin{aligned} w(\xi ) = {\left\{ \begin{array}{ll} (1-\xi ^2)^k &{} \qquad 0\le \xi \le 1 \\ 0 &{} \qquad \xi >1 \end{array}\right. } \end{aligned}$$
(38)

Appendix 2: Control data for NURBS objects

This section contains the NURBS description of the two cracks used in Sect. 5.

1.1 Circular arc

There are many options to define a NURBS describing a circle. A commonly used options is to define a quadratic NURBS with four rational segments. The knot vector is

$$\begin{aligned} \varLambda = \{0,0,0,0.25,0.5,0.75,1,1,1 \} \end{aligned}$$
(39)

and the control points and weights are detailed in Table 4 for a circle centred at the origin and with radius \(R\).

Table 4 Control points and weights for a circle of radius \(R\)

In order to define the circular arc depicted in Fig. 15, the radius of the circle is taken as R = \(a/\sin (\alpha )\) and the NURBS curve describing a circle is trimmed to the subinterval \(\left[ (1-\alpha )/360, 0.5 - (1-\alpha )/360\right] \) where the angle \(\alpha \) is given in degrees.

1.2 Parabolic arc

A parabolic arc can be described using a quadratic B-Spline with just three control points. The knot vector is simply

$$\begin{aligned} \varLambda = \{0,0,0,1,1,1 \} \end{aligned}$$
(40)

and the control points for the parabolic arc depicted in Fig. 16 are detailed in Table 5, where \(y_a = a^2/(4A)\). The coordinates of the focus of the parabola are \((0,A)\), where \(A = a/(2 \tan \alpha )\).

Table 5 Control points for a parabolic arc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevilla, R., Barbieri, E. NURBS distance fields for extremely curved cracks. Comput Mech 54, 1431–1446 (2014). https://doi.org/10.1007/s00466-014-1067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1067-4

Keywords

Navigation