Space–time fluid mechanics computation of heart valve models

Abstract

Fluid mechanics computation of heart valves with an interface-tracking (moving-mesh) method was one of the classes of computations targeted in introducing the space–time (ST) interface tracking method with topology change (ST-TC). The ST-TC method is a new version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method. It can deal with an actual contact between solid surfaces in flow problems with moving interfaces, while still possessing the desirable features of interface-tracking methods, such as better resolution of the boundary layers. The DSD/SST method with effective mesh update can already handle moving-interface problems when the solid surfaces are in near contact or create near TC, if the “nearness” is sufficiently “near” for the purpose of solving the problem. That, however, is not the case in fluid mechanics of heart valves, as the solid surfaces need to be brought into an actual contact when the flow has to be completely blocked. Here we extend the ST-TC method to 3D fluid mechanics computation of heart valve models. We present computations for two models: an aortic valve with coronary arteries and a mechanical aortic valve. These computations demonstrate that the ST-TC method can bring interface-tracking accuracy to fluid mechanics of heart valves, and can do that with computational practicality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

References

  1. 1.

    Takizawa K, Tezduyar TE, Buscher A, Asada, S (October 2013) Space–time interface-tracking with topology change (ST-TC). Comput Mech. doi:10.1007/s00466-013-0935-7

  2. 2.

    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575. doi:10.1002/fld.505

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49. doi:10.1007/s00466-008-0261-7

    Article  MATH  Google Scholar 

  4. 4.

    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, London. ISBN:978-0470978771

  5. 5.

    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225. doi:10.1007/s11831-012-9071-3

    Article  MathSciNet  Google Scholar 

  6. 6.

    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686. doi:10.1007/s00466-012-0760-4

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073. doi:10.1007/s00466-012-0790-y

    Article  MATH  MathSciNet  Google Scholar 

  8. 8.

    Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci. doi:10.1142/S0218202514500250

  9. 9.

    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. doi:10.1016/S0065-2156(08)70153-4

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351. doi:10.1016/0045-7825(92)90059-S

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371. doi:10.1016/0045-7825(92)90060-W

  12. 12.

    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900. doi:10.1002/fld.1430

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267. doi:10.1007/s00466-011-0571-z

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22:1230001. doi:10.1142/S0218202512300013

    Article  MathSciNet  Google Scholar 

  15. 15.

    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190:3009–3019

    Article  MATH  Google Scholar 

  17. 17.

    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27:599–621

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38:403–416

    Article  MATH  Google Scholar 

  20. 20.

    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43:81–90

    Article  MATH  Google Scholar 

  22. 22.

    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89

    Article  MATH  MathSciNet  Google Scholar 

  24. 24.

    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498

    Article  Google Scholar 

  26. 26.

    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235. doi:10.1002/fld.2400

    Article  MATH  Google Scholar 

  27. 27.

    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253

    Article  MATH  Google Scholar 

  28. 28.

    Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137–4152

    Article  MATH  MathSciNet  Google Scholar 

  29. 29.

    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599

    Article  MathSciNet  Google Scholar 

  30. 30.

    Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech 48:269–276. doi:10.1007/s00466-011-0620-7

    Article  MATH  MathSciNet  Google Scholar 

  31. 31.

    Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Methods Appl Sci 22:1230002. doi:10.1142/S0218202512300025

    Article  Google Scholar 

  32. 32.

    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905

    Article  Google Scholar 

  33. 33.

    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    Article  MathSciNet  Google Scholar 

  34. 34.

    Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions. Comput Mech 50:499–511

    Article  MATH  MathSciNet  Google Scholar 

  35. 35.

    Hsu M-C, Bazilevs Y (2012) Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833

    Article  MATH  MathSciNet  Google Scholar 

  36. 36.

    Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727

    Article  MATH  Google Scholar 

  37. 37.

    Minami S, Kawai H, Yoshimura S (2012) Parallel BDD-based monolithic approach for acoustic fluid–structure interaction. Comput Mech 50:707–718

    Article  MATH  MathSciNet  Google Scholar 

  38. 38.

    Miras T, Schotte J-S, Ohayon R (2012) Energy approach for static and linearized dynamic studies of elastic structures containing incompressible liquids with capillarity: a theoretical formulation. Comput Mech 50:729–741

    Article  MATH  MathSciNet  Google Scholar 

  39. 39.

    van Opstal TM, van Brummelen EH, de Borst R, Lewis MR (2012) A finite-element/boundary-element method for large-displacement fluid–structure interaction. Comput Mech 50:779–788

    Article  MATH  MathSciNet  Google Scholar 

  40. 40.

    Yao JY, Liu GR, Narmoneva DA, Hinton RB, Zhang Z-Q (2012) Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput Mech 50:789–804

    Article  MATH  MathSciNet  Google Scholar 

  41. 41.

    Larese A, Rossi R, Onate E, Idelsohn SR (2012) A coupled PFEM-Eulerian approach for the solution of porous FSI problems. Comput Mech 50:805–819

    Article  MATH  MathSciNet  Google Scholar 

  42. 42.

    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221. doi:10.1142/S0218202513400010

    Article  MATH  MathSciNet  Google Scholar 

  43. 43.

    Bazilevs Y, Hsu M-C, Bement MT (2013) Adjoint-based control of fluid–structure interaction for computational steering applications. Procedia Comput Sci 18:1989–1998

    Article  Google Scholar 

  44. 44.

    Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272

    Article  MATH  MathSciNet  Google Scholar 

  45. 45.

    Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011. doi:10.1115/1.4024415

  46. 46.

    Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) FSI modeling of vertical-axis wind turbines. J Appl Mech. doi:10.1115/1.4027466

  47. 47.

    Yao JY, Liu GR, Qian D, Chen CL, Xu GX (2013) A moving-mesh gradient smoothing method for compressible CFD problems. Math Models Methods Appl Sci 23:273–305

    Article  MATH  MathSciNet  Google Scholar 

  48. 48.

    Kamran K, Rossi R, Onate E, Idelsohn SR (2013) A compressible Lagrangian framework for modeling the fluid–structure interaction in the underwater implosion of an aluminum cylinder. Math Models Methods Appl Sci 23:339–367

  49. 49.

    Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481

    Article  Google Scholar 

  50. 50.

    Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981. doi:10.1007/s00466-013-0858-3

    Article  MATH  Google Scholar 

  51. 51.

    Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2013) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech. doi:10.1007/s00466-013-0931-y

  52. 52.

    Yao J, Liu GR (2014) A matrix-form GSM-CFD solver for incompressible fluids and its application to hemodynamics. Comput Mech. doi:10.1007/s00466-014-0990-8

  53. 53.

    Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech. doi:10.1007/s00466-013-0967-z

  54. 54.

    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. doi:10.1115/1.4005073

    Article  Google Scholar 

  55. 55.

    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760. doi:10.1007/s00466-012-0759-x

    Article  MATH  Google Scholar 

  56. 56.

    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778. doi:10.1007/s00466-012-0758-y

    Article  MATH  Google Scholar 

  57. 57.

    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15. doi:10.1007/s00466-013-0888-x

    Article  MATH  Google Scholar 

  58. 58.

    Takizawa K, Tezduyar TE, Kostov N (2014) Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech. doi:10.1007/s00466-014-0980-x

  59. 59.

    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218. doi:10.1002/fld.2221

    Article  MATH  Google Scholar 

  60. 60.

    Griffith BE, Luo X, McQueen DM, Peskin CS (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 1:137–177

    Article  Google Scholar 

  61. 61.

    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41. doi:10.1007/s00466-009-0425-0

    Article  MATH  MathSciNet  Google Scholar 

  62. 62.

    On-X Life Technologies, Inc.—designed for life. http://www.onxlti.com/

Download references

Acknowledgments

This work was supported in part by JST-CREST and Rice–Waseda research agreement (first and fourth authors).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tayfun E. Tezduyar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takizawa, K., Tezduyar, T.E., Buscher, A. et al. Space–time fluid mechanics computation of heart valve models. Comput Mech 54, 973–986 (2014). https://doi.org/10.1007/s00466-014-1046-9

Download citation

Keywords

  • Heart valves
  • Fluid mechanics computation
  • Contact
  • Topology change
  • Space–time interface-tracking
  • ST-TC method
  • DSD/SST method
  • Moving-mesh method