Skip to main content
Log in

Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The present contribution is concerned with the macroscopic modelling of the selective electron beam melting process by using the finite element method. The modelling and simulation of the selective electron beam melting process involves various challenges: complex material behaviour, phase changes, thermomechanical coupling, high temperature gradients, different time and length scales etc. The present contribution focuses on performance considerations of solution approaches for thermomechanically coupled problems, i.e. the monolithic and the adiabatic split approach. The material model is restricted to nonlinear thermoelasticity with temperature-dependent material parameters. As a numerical example a straight scanning path is simulated, the predicted temperatures and stresses are analysed and the performance of the two algorithms is compared. The adiabatic split approach turned out to be much more efficient for linear thermomechanical problems, i.e. the solution time is three times less than with the monolithic approach. For nonlinear problems, stability issues necessitated the use of the Euler backward integration scheme, and therefore, the adiabatic split approach required small time steps for reasonable accuracy. Thus, for nonlinear problems and in combination with the Euler backward integration scheme, the monolithic solver turned out to be more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Argyris JH, Szimmat J, Willam KJ (1982) Computational aspects of welding stress analysis. Comput Methods Appl Mech Eng 33(1):635–665

    Article  MATH  Google Scholar 

  2. Armero F, Simo J (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35(4):737–766

    Article  MATH  MathSciNet  Google Scholar 

  3. Bangerth W, Hartmann R, Kanschat G (2007) deal. iia general-purpose object-oriented finite element library. ACM Trans Math Softw (TOMS) 33(4):24

    Article  MathSciNet  Google Scholar 

  4. Čanadija M, Brnić J (2004) Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. Int J Plast 20(10):1851–1874

  5. Chen T, Zhang Y (2006) Three-dimensional modeling of selective laser sintering of two-component metal powder layers. Trans-Am Soc Mech Eng J Manuf Sci Eng 128(1):299

    Google Scholar 

  6. Contuzzi N, Campanelli S, Ludovico A (2011) 3d finite element analysis in the selective laser melting process. Int J Simul Model 10:113–121

    Article  Google Scholar 

  7. Dai K, Shaw L (2004) Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater 52(1):69–80

    Article  Google Scholar 

  8. Dong L, Makradi A, Ahzi S, Remond Y (2009) Three-dimensional transient finite element analysis of the selective laser sintering process. J Mater Process Technol 209:700–706

    Article  Google Scholar 

  9. Ehlers W, Zinatbakhsh S, Markert B (2013) Stability analysis of finite difference schemes revisited: A study of decoupled solution strategies for coupled multifield problems. Int J Numer Methods Eng 94(8):758–786

  10. Felippa CA, Park K, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24):3247–3270

    Article  MATH  Google Scholar 

  11. Heinl P, Müller L, Körner C, Singer RF, Müller FA (2008) Cellular ti–6al–4v structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544

    Article  Google Scholar 

  12. Heinl P, Rottmair A, Körner C, Singer RF (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9(5):360–364

    Article  Google Scholar 

  13. Jhabvala J (2010) Study of the consolidation process under macro-and microscopic thermal effects in selective laser sintering and selective laser melting. Ph.D. Thesis, EPFL

  14. Johansson L, Klarbring A (1993) Thermoelastic frictional contact problems: modelling, finite element approximation and numerical realization. Comput Methods Appl Mech Eng 105(2):181–210

    Article  MATH  MathSciNet  Google Scholar 

  15. Kolossov S, Boillat E, Glardon R, Fischer P, Locher M (2004) 3d fe simulation for temperature evolution in the selective laser sintering process. Int J Machine Tools Manuf 44(2):117–123

    Article  Google Scholar 

  16. Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987

    Article  Google Scholar 

  17. Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1):616–622

    Article  Google Scholar 

  18. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36

    Article  Google Scholar 

  19. Lindgren LE (2006) Numerical modelling of welding. Comput Methods Appl Mech Eng 195(48):6710–6736

    Article  MATH  Google Scholar 

  20. Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265

    Article  Google Scholar 

  21. Sedlak J, Piska M, Ptaekova M, Madaj M, Charvat O, Dvooaeek J, Zouhar J, Rozkosny L (2010) Properties of the biocompatible TiAl6V4 material produced by DMLS. MTM Int Virtual J 4–5:74–78

    Google Scholar 

  22. Simo J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(1):41–104

    Article  MATH  Google Scholar 

  23. Williams JD, Deckard CR (1998) Advances in modeling the effects of selected parameters on the sls process. Rapid Prototyp J 4(2):90–100

    Article  Google Scholar 

  24. Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4(1):35–45

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank the German Research Foundation (DFG) for funding the Collaborative Research Centre 814, sub-project C3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Mergheim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riedlbauer, D., Steinmann, P. & Mergheim, J. Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations. Comput Mech 54, 109–122 (2014). https://doi.org/10.1007/s00466-014-1026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1026-0

Keywords

Navigation