Skip to main content

A parallel iterative partitioned coupling analysis system for large-scale acoustic fluid–structure interactions

Abstract

In many engineering fields, dynamic response in fluid–structure interaction (FSI) is important, and some of the FSI phenomena are treated as acoustic FSI (AFSI) problems. Dynamic interactions between fluids and structures may change dynamic characteristics of the structure and its response to external excitation parameters such as seismic loading. This paper describes a parallel coupling analysis system for large-scale AFSI problems using iterative partitioned coupling techniques. We employ an open source parallel finite element analysis system called ADVENTURE, which adopts an efficient preconditioned iterative linear algebraic solver. In addition, we have recently developed a parallel coupling tool called ADVENTURE_Coupler to efficiently handle interface variables in various parallel computing environments. We also employ the Broyden method for updating interface variables to attain robust and fast convergence of fixed-point iterations. This paper describes key features of the coupling analysis system developed, and we perform tests to validate its performance for several AFSI problems. The system runs efficiently in a parallel environment, and it is capable of analyzing three-dimensional-complex-shaped structures with more than 20 million degrees-of-freedom (DOFs). Its numerical results also show good agreement with experimental results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Fritz RJ (1972) The effect of liquids on the dynamic motions of immersed solids. Trans ASME J Eng Ind 94:167–173

    Article  Google Scholar 

  2. Chen SS (1974) Parallel-flow-induced vibrations and instabilities of cylindrical structures. Shock Vib Dig 6(10):2–12

    Article  Google Scholar 

  3. Sigrist JF, Broc D (2008) Dynamic analysis of a tube bundle with fluid–structure interaction modeling using a homogenization method. Comput Methods Appl Eng 197:1080–1099

    Article  MATH  MathSciNet  Google Scholar 

  4. Mandel J (2002) An Iterative substructuring method for coupled fluid–solid acoustic problems. J Comput Phys 177(1):95–116

    Article  MATH  MathSciNet  Google Scholar 

  5. Heil M (2004) An efficient solver for the fully-coupled solution of large-displacement fluid–structure interaction problems. Comput Methods Appl Mech Eng 193:1–23

    Article  MATH  MathSciNet  Google Scholar 

  6. Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Int J Numer Methods Eng 64:167–203

    Article  MATH  Google Scholar 

  7. Washio T, Hisada T, Watanabe H, Tezduyar TE (2005) A robust preconditioner for fluid–structure interaction problems. Comput Methods Appl Mech Eng 194:4027–4047

    Article  MATH  MathSciNet  Google Scholar 

  8. Liew KM, Wang WQ, Zhang LX, He XQ (2007) A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation. Int J Numer Methods Eng 72:1560–1583

    Article  MATH  MathSciNet  Google Scholar 

  9. Badia S, Quaini A, Quarteroni A (2008) Modular vs. non-modular preconditioners for fluid–structure systems with large added-mass effect. Comput Methods Appl Mech Eng 197:4216–5232

    Article  MATH  MathSciNet  Google Scholar 

  10. Minami S, Kawai H, Yoshimura S (2012) A monolithic approach based on balancing domain decomposition method for acoustic fluid–structure interaction. J Appl Mech 79:010906

    Article  Google Scholar 

  11. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Meth Appl Mech Eng 195:2002–2027

    Article  MATH  MathSciNet  Google Scholar 

  12. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267

    Article  MATH  MathSciNet  Google Scholar 

  13. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction, methods and applications. Wiley, New York

    Book  MATH  Google Scholar 

  14. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900

    Article  MATH  MathSciNet  Google Scholar 

  15. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225

    Article  MathSciNet  Google Scholar 

  16. Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23(3):307–338. doi:10.1142/S0218202513400058

    Article  MATH  MathSciNet  Google Scholar 

  17. Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43:73–80

    Article  MATH  MathSciNet  Google Scholar 

  18. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83– 89

    Google Scholar 

  19. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65:135–149

    Article  MATH  MathSciNet  Google Scholar 

  20. Felippa CA, Park KC (1980) Staggered transient analysis procedures for coupled mechanical systems: formulation. Comput Methods Appl Mech Eng 24:61–111

    Article  MATH  Google Scholar 

  21. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows: fluid–structure interactions. Int J Numer Methods Fluids 21:933–953

    Article  MATH  Google Scholar 

  22. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332

    Article  MATH  Google Scholar 

  23. Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Meth Appl Mech Eng 190(24–25):3039–3067

    Article  MATH  Google Scholar 

  24. Michler C, van Brummelen EH, de Borst R (2004) An interface Newton–Krylov solver for fluid–structure interaction. Int J Numer Methods Fluids 47(10–11):1189–1195

    Google Scholar 

  25. Fernandez MA, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid–structure coupling. Comput Struct 83(2–3):127–142

    Article  Google Scholar 

  26. Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Methods Appl Mech Eng 195:2028–2049

    Article  MATH  MathSciNet  Google Scholar 

  27. Yamada T, Yoshimura S (2008) Line search partitioned approach for fluid structure interaction analysis of flapping wing. CMES 24(1):51–60

    MATH  Google Scholar 

  28. Minami S, Yoshimura S (2010) Performance evaluation of nonlinear algorithms with line search for partitioned coupling technique for fluid–structure interactions. Int J Numer Methods Fluids 64(10–12):1129–1147

    Article  MATH  MathSciNet  Google Scholar 

  29. Joppich W, Kuerschner M (2006) MpCCI—a tool for the simulation of coupled applications. Concurr Comput: Pract Exp 18(2):183–192

    Article  Google Scholar 

  30. Bungartz HJ, Benk J, Gatzhammer B, Mehl M, Neckel T (2010) Partitioned simulation of fluid–structure interaction on Cartesian grids. In: Bungartz HJ, Mehl M, Schaefer M (eds) Fluid–structure interaction, modelling, simulation, optimization, Part II. Lecture notes in CSE. Springer, Berlin, pp 255–284

    Google Scholar 

  31. De Cecchis D, Drummond LA, Castillo JE (2013) Design of a distributed coupling toolkit for high performance computing environment. Math Comput Model 57:2267–2278

    Article  Google Scholar 

  32. Piacentini A, Morel T, Thevenin A, Duchaine F (2011) Open-PALM : an open source dynamic parallel coupler. In: IV International Conference on Computational Methods for Coupled Problems in Science and Engineering, Kos Island

  33. Duchaine F, Jaure S, Poitou D, Quemerais E, Staffelbach G, Morel T, Gicquel L (2013) High performance conjugate heat transfer with the OPENPALM coupler. In: V International Conference on Computational Methods for Coupled Problems in Science and Engineering, Kos Island

  34. Yoshimura S, Shioya R, Noguchi H, Miyamura T (2002) Advanced general-purpose computational mechanics system for large scale analysis and design. J Comput Appl Math 149:279–296

    Article  MATH  Google Scholar 

  35. ADVENTURE Project (2013). http://www.adventure.sys.t.u-tokyo.ac.jp

  36. Miyamura T, Yoshimura S (2004) Generalized I/O data format and interface library for module-based parallel finite element analysis system. Adv Softw Eng 35:149–159

    Article  Google Scholar 

  37. Ogino M, Shioya R, Kawai H, Yoshimura S (2005) Seismic response analysis of full scale nuclear vessel model with ADVENTURE system on the earth simulator. J Earth Sim 2:41–54

    Google Scholar 

  38. Yoshimura S (2006) Virtual demonstration tests of large-scale and complex artifacts using an open source parallel CAE system, ADVENTURE. J Solid State Phenom 110:133–142

    Article  MathSciNet  Google Scholar 

  39. Kawai H, Ogino M, Shioya R, Yoshimura S (2011) Large scale elasto-plastic analysis using domain decomposition method optimized for multi-core CPU architecture. Key Eng Mater 462–463:605–610

    Google Scholar 

  40. Watabe M, Shibata H, Sato H, Kawakami S, Ohno T, Ichiki T, Sasaki Y (1989) Preliminary study on seismic proving test of BWR core internals. In: Proceedings of 10th International Conference on SMiRT, 841–846

  41. Sato H, Suzuki K, Kamata T, Taira T, Niwa H, Nakajima M (1989) Test results on seismic proving test of BWR core internals. In: Proceedings of 10th International Conference on SMiRT, 847–852

  42. Kataoka S, Minami S, Kawai H, Yoshimura S (2010) Three dimensional FSI simulation of extruded rod bundles immersed in fluid using partitioned coupling technique, PVP2010

  43. Broyden CG (1967) Quasi-Newton methods and their application to function minimization. Math Comput 21(99):368–381

    Article  MATH  MathSciNet  Google Scholar 

  44. Kelley CT (2003) Solving nonlinear equations with Newton’s method. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  45. Shioya R, Yagawa G (1994) Parallel finite elements on a massively parallel computer with domain decomposition. Comput Syst Eng 4:495–503

    Google Scholar 

  46. Mandel J (1993) Balancing domain decomposition. Commun Numer Methods Eng 9:233–241

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kataoka, S., Minami, S., Kawai, H. et al. A parallel iterative partitioned coupling analysis system for large-scale acoustic fluid–structure interactions. Comput Mech 53, 1299–1310 (2014). https://doi.org/10.1007/s00466-013-0973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0973-1

Keywords

  • Parallel coupling analysis system
  • Iterative partitioned techniques
  • Acoustic fluid–structure interaction