Skip to main content
Log in

Interface characteristics of carbon nanotube reinforced polymer composites using an advanced pull-out model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An advanced pull-out model is presented to obtain the interface characteristics of carbon nanotube (CNT) in polymer composite. Since, a part of the CNT/matrix interface near the crack tip is considered to be debonded, there must present adhesive van der Waals (vdW) interaction which is generally presented in the form of Lennard-Jones potential. A separate analytical model is also proposed to account normal cohesive stress caused by the vdW interaction along the debonded CNT/polymer interface. Analytical solutions for axial and interfacial shear stress components are derived in closed form. The analytical result shows that contribution of vdW interaction is very significant and also enhances stress transfer potential of CNT in polymer composite. Parametric studies are also conducted to obtain the influence of key composite factors on bonded and debonded interface. The result reveals that the parameter dependency of interfacial stress transfer is significantly higher in the perfectly bonded interface than that of the debonded interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lourie O, Wagner HD (1998) Evaluation of Young’s modulus of carbon nanotubes by Micro-Raman Spectroscopy. J Mater Res 13:2418–2422. doi:10.1557/JMR.1998.0336

    Google Scholar 

  2. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912. doi:10.1016/s0266-3538(01)00094-x

    Article  Google Scholar 

  3. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680. doi:10.1038/381678a0

    Article  Google Scholar 

  4. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975. doi:10.1126/science.277.5334.1971

    Article  Google Scholar 

  5. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511. doi:10.1103/PhysRevLett.76.2511

    Article  Google Scholar 

  6. Ashrafi B, Hubert P (2006) Modeling the elastic properties of carbon nanotube array/polymer composites. Compos Sci Technol 66:387–396. doi:10.1016/j.compscitech.2005.07.020

    Article  Google Scholar 

  7. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single- walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12:750–753. doi:10.1002/(sici)1521-4095(200005)12:10

    Google Scholar 

  8. Chen XH, Chen CS, Xiao HN, Liu HB, Zhou LP, Li SL, Zhang G (2006) Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits. Tribol Int 39:22–28. doi:10.1016/j.triboint.2004.11.008

    Article  Google Scholar 

  9. Manoharan MP, Sharma A, Desai AV, Haque MA, Bakis CE, Wang KW (2009) The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments. Nanotechnology 20:295701. doi:10.1088/0957-4484/20/29/295701

    Article  Google Scholar 

  10. Qian D, Wagner GJ, Liu WK, Yu M-F, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495. doi:10.1115/1.1490129

    Article  Google Scholar 

  11. Desai A, Haque M (2005) Mechanics of the interface for carbon nanotube-polymer composites. Thin Walled Struct 43:1787–1803. doi:10.1016/j.tws.2005.07.003

    Article  Google Scholar 

  12. Salehikhojin A, Jalili N (2008) A comprehensive model for load transfer in nanotube reinforced piezoelectric polymeric composites subjected to electro-thermo-mechanical loadings. Compos Part B Eng 39:986–998. doi:10.1016/j.compositesb.2007.12.001

    Article  Google Scholar 

  13. Qian D, Liu WK, Ruoff RS (2003) Load transfer mechanism in carbon nanotube ropes. Compos Sci Technol 63:1561–1569. doi:10.1016/S0266-3538(03)00064-2

    Article  Google Scholar 

  14. Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl Phys Lett 79:4225. doi:10.1063/1.1428116

    Article  Google Scholar 

  15. Manoharan MP, Sharma A, Desai AV, Haque MA, Bakis CE, Wang KW (2009) The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments. Nanotechnology 20:295701. doi:10.1088/0957-4484/20/29/295701

    Article  Google Scholar 

  16. Kin L, Sean L (2001) Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl Phys Lett 79:4225–4227. doi:10.1063/1.1428116

    Article  Google Scholar 

  17. Haque A, Ramasetty A (2005) Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos Struct 71:68–77. doi:10.1016/j.compstruct.2004.09.029

    Article  Google Scholar 

  18. Jiang L, Huang Y, Jiang H, Ravichandran G, Gao H, Hwang K, Liu B (2006) A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54:2436–2452. doi:10.1016/j.jmps.2006.04.009

    Article  MATH  Google Scholar 

  19. Jiang Y, Zhou W, Kim T, Huang Y, Zuo J (2008) Measurement of radial deformation of single-wall carbon nanotubes induced by intertube van der Waals forces. Phys Rev B 77. doi:10.1103/PhysRevB.77.153405

  20. Zheng Q, Xue Q, Yan K, Gao X, Li Q, Hao L (2008) Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube-polymer composites. Polymer 49:800–808. doi:10.1016/j.polymer.2007.12.018

    Article  Google Scholar 

  21. Lau K (2003) Interfacial bonding characteristics of nanotube/polymer composites. Chem Phys Lett 370:399–405. doi:10.1016/s0009-2614(03)00100-3

    Article  Google Scholar 

  22. Gou J, Liang Z, Zhang C, Wang B (2005) Computational analysis of effect of single-walled carbon nanotube rope on molecular interaction and load transfer of nanocomposites. Compos Part B Eng 36:524–533. doi:10.1016/j.compositesb.2005.02.004

    Article  Google Scholar 

  23. Seshadri M, Saigal S (2007) Crack bridging in polymer nanocomposites. J Engi Mech 133:911–918. doi:10.1061/(ASCE)0733-9399(2007)133:8(911)

    Google Scholar 

  24. Li-Min Z, Jang-Kyo K, Yiu-Wing M (1992) On the single fibre pull-out problem: effect of loading method. Compos Sci Technol 45:153–160. doi:10.1016/0266-3538(92)90037-4

    Article  Google Scholar 

  25. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. British J Appl Phys 3:72–79. doi:10.1088/0508-3443/3/3/302

    Article  Google Scholar 

  26. Chiang Y-C (2001) The influence of Poisson contraction on matrix cracking stress in fiber reinforced ceramics. J Mater Sci 36:3239–3246. doi:10.1023/a:1017994521472

    Article  Google Scholar 

  27. Frankland SJV, Harik VM (2003) Analysis of carbon nanotube pull-out from a polymer matrix. Surf Sci 525:L103–L108. doi:10.1016/S0039-6028(02)02532-3

    Article  Google Scholar 

  28. Tan X, Kin L (2004) A nonlinear pullout model for unidirectional carbon nanotube-reinforced composites. Compos Part B Eng 35B:211–217. doi:10.1016/j.compositesb.2003.08.001

    Google Scholar 

  29. Kin-tak L (2003) Interfacial bonding characteristics of nanotube/polymer composites. Chem Phys Lett 370:399–405. doi:10.1016/S0009-2614(03)00100-3

    Article  Google Scholar 

  30. Daniel Wagner H (2002) Nanotube-polymer adhesion: a mechanics approach. Chem Phys Lett 361:57–61. doi:10.1016/s0009-2614(02)00948-x

    Article  Google Scholar 

  31. Natsuki T, Wang F, Ni Q, Endo M (2007) Interfacial stress transfer of fiber pullout for carbon nanotubes with a composite coating. J Mater Sci 42:4191–4196. doi:10.1007/s10853-006-0641-3

    Article  Google Scholar 

  32. Natsuki T, Wang F, Ni QQ, Endo M (2007) Interfacial stress transfer of fiber pullout for carbon nanotubes with a composite coating. J Mater Sci 42:4191–4196. doi:10.1007/s10853-006-0641-3

    Article  Google Scholar 

  33. Ahmed KS, Keng AK (2010) An improved pullout model for carbon nanotube reinforced composites in: Proceedings of the twenty-third KKCNN symposium on civil engineering. Taipei, Taiwan, pp 41–44

  34. Ahmed KS, Keng AK (2012) A Pull-out model for perfectly bonded carbon nanotube in polymer composite. J Mech Mater Struct 7:753–764. doi:10.2140/jomms.2012.7.753

    Article  Google Scholar 

  35. Gao X, Li K (2005) A shear-lag model for carbon nanotube-reinforced polymer composites. Int J Solids Struct 42:1649–1667. doi:10.1016/j.ijsolstr.2004.08.020

    Article  MATH  Google Scholar 

  36. Ailin L, Wang KW, Bakis CE (2010) Multiscale damping model for polymeric composites containing carbon nanotube ropes. J Compos Mater 44:2301–2323. doi:10.1177/0021998310365176

    Google Scholar 

  37. Budiansky B, Hutchinson JW, Evans AG (1986) Matrix fracture in fiber-reinforced ceramics. J Mech Phys Solids 34:167–189. doi:10.1016/0022-5096(86)90035-9

    Article  MATH  Google Scholar 

  38. Gao Y-C, Mai Y-W, Cotterell B (1988) Fracture of fiber-reinforced materials. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 39:550–572. doi:10.1007/bf00948962

    Article  MATH  Google Scholar 

  39. Xiao T, Liao K (2004) A nonlinear pullout model for unidirectional carbon nanotube-reinforced composites. Compos Part B Eng 35:211–217. doi:10.1016/j.compositesb.2003.08.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khondaker Sakil Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, K.S., Keng, A.K. Interface characteristics of carbon nanotube reinforced polymer composites using an advanced pull-out model. Comput Mech 53, 297–308 (2014). https://doi.org/10.1007/s00466-013-0908-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0908-x

Keywords

Navigation