Skip to main content
Log in

Adaptive meshless local maximum-entropy finite element method for convection–diffusion problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a meshless local maximum-entropy finite element method (LME-FEM) is proposed to solve 1D Poisson equation and steady state convection–diffusion problems at various Peclet numbers in both 1D and 2D. By using local maximum-entropy (LME) approximation scheme to construct the element shape functions in the formulation of finite element method (FEM), additional nodes can be introduced within element without any mesh refinement to increase the accuracy of numerical approximation of unknown function, which procedure is similar to conventional p-refinement but without increasing the element connectivity to avoid the high conditioning matrix. The resulted LME-FEM preserves several significant characteristics of conventional FEM such as Kronecker-delta property on element vertices, partition of unity of shape function and exact reproduction of constant and linear functions. Furthermore, according to the essential properties of LME approximation scheme, nodes can be introduced in an arbitrary way and the \(C^0\) continuity of the shape function along element edge is kept at the same time. No transition element is needed to connect elements of different orders. The property of arbitrary local refinement makes LME-FEM be a numerical method that can adaptively solve the numerical solutions of various problems where troublesome local mesh refinement is in general necessary to obtain reasonable solutions. Several numerical examples with dramatically varying solutions are presented to test the capability of the current method. The numerical results show that LME-FEM can obtain much better and stable solutions than conventional FEM with linear element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Almeida RC, Silva RS (1997) A stable Petrov–Galerkin method for convection-dominated problems. Comput Methods Appl Mech Eng 140(34):291–304

    Article  MATH  MathSciNet  Google Scholar 

  2. Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65(13):2167–2202

    Article  MATH  MathSciNet  Google Scholar 

  3. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MATH  MathSciNet  Google Scholar 

  4. Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov–Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput Mech 24(5):348–372

    Article  MATH  Google Scholar 

  5. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256, times Cited: 2023

    Google Scholar 

  6. Belytschko T, Organ D, Krongauz Y (1995) A coupled finite element-element-free Galerkin method. Comput Mech 17(3):186–195

    Article  MATH  MathSciNet  Google Scholar 

  7. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1):3–47

    Article  MATH  Google Scholar 

  8. Brooks AN, Hughes TJR (1982) Streamline upwind Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259

    Article  MATH  MathSciNet  Google Scholar 

  9. Cyron CJ, Arroyo M, Ortiz M (2009) Smooth, second order, non-negative meshfree approximants selected by maximum entropy. Int J Numer Methods Eng 79(13):1605–1632

    Article  MATH  MathSciNet  Google Scholar 

  10. Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21(6):1129–1148

    Article  MATH  MathSciNet  Google Scholar 

  11. Gu YT, Liu GR (2001) A coupled element free Galerkin/boundary element method for stress analysis of two-dimensional solids. Comput Methods Appl Mech Eng 190(34):4405–4419

    Article  Google Scholar 

  12. Hegen D (1996) Element-free Galerkin methods in combination with finite element approaches. Comput Methods Appl Mech Eng 135(12):143–166

    Article  MATH  Google Scholar 

  13. Huerta A, Fernández-Méndez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48(11):1615–1636

    Article  MATH  Google Scholar 

  14. Liu GR, Gu YT (2000) Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Comput Mech 26(6):536–546

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  16. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  17. Rosolen A, Millan D, Arroyo M (2010) On the optimum support size in meshfree methods: a variational adaptivity approach with maximum-entropy approximants. Int J Numer Methods Eng 82(7):868–895

    MATH  MathSciNet  Google Scholar 

  18. Shannon CE (2001) A mathematical theory of communication. SIGMOBILE Mob Comput Commun Rev 5(1):3–55

    Article  Google Scholar 

  19. Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61(12):2159–2181

    Article  MATH  MathSciNet  Google Scholar 

  20. Sukumar N, Wright RW (2007) Overview and construction of meshfree basis functions: from moving least squares to entropy approximants. Int J Numer Methods Eng 70(2):181–205

    Article  MATH  MathSciNet  Google Scholar 

  21. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite Volume method, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  22. Wu CT, Hu W (2011) Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids. Comput Methods Appl Mech Eng 200(4546):2991–3010

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu CT, Park CK, Chen JS (2011a) A generalized approximation for the meshfree analysis of solids. Int J Numer Methods Eng 85(6):693–722

    Article  MATH  Google Scholar 

  24. Wu CT, Yang FL, Young DL (2011b) Application of the method of fundamental solutions and the generalized Lagally theorem to the interaction of solid body and external singularities in an inviscid fluid. Comput Mater Continua 23(2): 135 –154

    Google Scholar 

  25. Wu CT, Hu W, Chen JS (2012) A meshfree-enriched finite element method for compressible and near-incompressible elasticity. Int J Numer Methods Eng 90(7):882–914

    Google Scholar 

  26. Young DL, Jane SC, Lin CY, Chiu CL, Chen KC (2004) Solutions of 2D and 3D Stokes laws using multiquadrics method. Eng Anal Bound Elem 28(10):1233–1243

    Article  MATH  Google Scholar 

  27. Zienkiewicz OC, De SR, Gago JP, Kelly DW (1983) The hierarchical concept in finite element analysis. Comput Struct 16(14):53–65

    Article  MATH  Google Scholar 

  28. Zienkiewicz OC, Taylor RL, Zhu J (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C.T., Young, D.L. & Hong, H.K. Adaptive meshless local maximum-entropy finite element method for convection–diffusion problems. Comput Mech 53, 189–200 (2014). https://doi.org/10.1007/s00466-013-0901-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0901-4

Keywords

Navigation