Skip to main content
Log in

Direct numerical simulation of the dynamics of sliding rough surfaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The noise generated by the friction of two rough surfaces under weak contact pressure is usually called roughness noise. The underlying vibration which produces the noise stems from numerous instantaneous shocks (in the microsecond range) between surface micro-asperities. The numerical simulation of this problem using classical mechanics requires a fine discretization in both space and time. This is why the finite element method takes much CPU time. In this study, we propose an alternative numerical approach which is based on a truncated modal decomposition of the vibration, a central difference integration scheme and two algorithms for contact: The penalty algorithm and the Lagrange multiplier algorithm. Not only does it reproduce the empirical laws of vibration level versus roughness and sliding speed found experimentally but it also provides the statistical properties of local events which are not accessible by experiment. The CPU time reduction is typically a factor of 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akay A (2002) Acoustics of friction. J Acoust Soc Am 111(4):1525–1548

    Article  Google Scholar 

  2. Amundsen D, Scheibert J, Thøgersen K, Trømborg J, Malthe-Sørenssen A (2012) 1d model of precursors to frictional stick-slip motion allowing for robust comparison with experiments. Tribol Lett 45:357–369

    Article  Google Scholar 

  3. Anand A, Soom A (1984) Roughness-induced transient loading at a sliding contact during start-up. J Lubrication Technol 106(1):49–53

    Google Scholar 

  4. Andersson P, Kropp W (2008) Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness. J Sound Vib 318:296–312

    Article  Google Scholar 

  5. Batailly A, Magnain B, Chevaugeon N (2013) A comparative study between two smoothing strategies for the simulation of contact with large sliding. Comput Mech 51(5):581–601

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben Abdelounis H, Le Bot A, Perret-Liaudet J, Zahouani H (2010) An experimental study on roughness noise of dry rough flat surfaces. Wear 268(1–2):335–345

    Article  Google Scholar 

  7. Ben Abdelounis H, Zahouani H, Le Bot A, Perret-Liaudet J, Tkaya MB (2010) Numerical simulation of friction noise. Wear 271(3–4):621–624

    Google Scholar 

  8. Bergstrom D (2012) Rough surface generation & analysis. http://www.mysimlabs.com. Accessed 26 Feb 2012

  9. Boyko LS, Maruyamab S, Adachia K, Kato K (2007) The roughness effect on the frequency of frictional sound. Tribol Int 40(4):659–664

    Article  Google Scholar 

  10. Bussetta P, Marceau D, Ponthot JP (2012) The adapted augmented lagrangian method: a new method for the resolution of the mechanical frictional contact problem. Comput Mech 49:259–275

    Article  MathSciNet  MATH  Google Scholar 

  11. Butlin T, Woodhouse J (2009) Friction-induced vibration: should low-order models be believed? J Sound Vib 328:92–108

    Article  Google Scholar 

  12. Carpenter NJ, Taylor RL, Katona MG (1991) Lagrange constraints for transient finite element surface contact. Int J Numer Methods Eng 32(1):103–128

    Article  MATH  Google Scholar 

  13. Chen J, Soom A (1986) Simulation of random surface roughness-induced contact vibrations at hertzian contacts during steady sliding. J Tribol 108(1):123–127

    Article  Google Scholar 

  14. Delogu F, Cocco G (2006) Numerical simulations of atomic-scale disordering processes at impact between two rough crystalline surfaces. Phys Rev B 74(035):406

    Google Scholar 

  15. Dubois G, Cesbron J, Yin H, Anfosso-Lde F (2012) Numerical evaluation of tyre/road contact pressures using a multi-asperity approach. Int J Mech Sci 54(1):84–94

    Article  Google Scholar 

  16. Garcia N, Stoll E (1984) Monte carlo calculation for electromagnetic-wave scattering from random rough surfaces. Phys Rev Lett 52(20):1798–1801

    Article  Google Scholar 

  17. Graff KF (1975) Wave motion in elastic solids. Ohio State University Press, Columbus

    MATH  Google Scholar 

  18. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. R Soc Lond Proc Ser A 295(1442):300–319

    Article  Google Scholar 

  19. Haskell P (1961) Insect sounds. Witherby, London

    Google Scholar 

  20. Hess DP, Soom A, Akay A, Bengisu MT (1992) Normal and angular motions at rough planar contacts during sliding with friction. J Tribol 114(3):567–578

    Article  Google Scholar 

  21. Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  22. Kapania R, Byun C (1993) Reduction methods based on eigenvectors and ritz vectors for nonlinear transient analysis. Comput Mech 11:65–82

    Article  MATH  Google Scholar 

  23. Laursen T (2003) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Engineering online library. Springer, Berlin

    Book  Google Scholar 

  24. Le Bot A, Bou Chakra E (2010) Measurement of friction noise versus contact area of rough surfaces weakly loaded. Tribol Lett 37:273–281

    Article  Google Scholar 

  25. Le Bot A, Bou-Chakra E, Michon G (2011) Dissipation of vibration in rough contact. Tribol Lett 41(1):47–53

    Article  Google Scholar 

  26. Lemaitre J (2001) Handbook of materials behavior models: multiphysics behavior. vol. 3. Academic Press, New York

  27. Meziane A, Baillet L (2010) Non linear analysis of vibrations generated by a contact with friction. Eur J Comput Mech 19:305–316

    Google Scholar 

  28. Meziane A, D’Errico S, Baillet L, Laulagnet B (2007) Instabilities generated by friction in a pad disc system during the braking process. Tribol Int 40(7):1127–1136

    Article  Google Scholar 

  29. Mohammadi S (2003) Discontinuum mechanics: using finite and discrete elements. WIT Press, Southampton

    Google Scholar 

  30. Norton P, Karczub D (2003) Fundamentals of noise and vibration analysis for engineers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Olsson M (1991) On the fundamental moving load problem. J Sound Vib 145(2):299–307

    Google Scholar 

  32. Othman M, Elkholy A, Seireg A (1990) Experimental investigation of fritional noise and surface-roughness characteristics. Exp Mech 47:328–331

    Article  Google Scholar 

  33. Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(4547):4891–4913

    Article  MathSciNet  MATH  Google Scholar 

  34. Rigaud E, Perret-Liaudet J (2003) Experiments and numerical results on non-linear vibrations of an impacting hertzian contact. Part 1: harmonic excitation. J Sound Vib 265(2):289–307

    Google Scholar 

  35. Trømborg J, Scheibert J, Amundsen DS, Thøgersen K, Malthe-Sørenssen A (2011) Transition from static to kinetic friction: insights from a 2D model. Phys Rev Lett 107(074):301

    Google Scholar 

  36. Yang B (2005) Stress, strain, and structural dynamics: an interactive handbook of formulas, solutions, and MATLAB toolboxes. No. vol. 1 in mechanical engineering. Elsevier Science, Burlington

  37. Yokoi M, Nakai M (1979) A fundamental study of frictional noise. (1st report, the generating mechanism of rubbing noise and squeal noise). Bull JSME 22(173):1665–1671

    Article  Google Scholar 

  38. Yokoi M, Nakai M (1980) Fundamental study on frictional noise: 2. The generating mechanism of squeal noise of higher modes. Bull JSME 23(186):2118–2124

    Article  Google Scholar 

  39. Yokoi M, Nakai M (1981) Fundamental study on frictional noise: 3. The influence of periodic surface roughness on frictional noise. Bull JSME 24(194):1470–1476

    Article  Google Scholar 

  40. Yokoi M, Nakai M (1981) Fundamental study on frictional noise: 4. The influence of angle of inclination of the rod on frictional noise. Bull JSME 24(194):1477–1483

    Google Scholar 

  41. Yokoi M, Nakai M (1982) Fundamental study on frictional noise: 5. The influence of random surface roughness on frictional noise. Bull JSME 25(203):827–833

    Article  Google Scholar 

  42. Zavarise G, De Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79(4):379–416

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was performed within the framework of the Labex CeLyA of Université de Lyon, operated by the French National Research Agency (ANR-10-LABX-0060/ANR-11-IDEX-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet Hung Dang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, V.H., Perret-Liaudet, J., Scheibert, J. et al. Direct numerical simulation of the dynamics of sliding rough surfaces. Comput Mech 52, 1169–1183 (2013). https://doi.org/10.1007/s00466-013-0870-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0870-7

Keywords

Navigation