Skip to main content
Log in

A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In cardiovascular blood flow simulations a large portion of computational resources is dedicated to solve the linear system of equations. Boundary conditions in these applications are critical for obtaining accurate and physiologically realistic solutions, and pose numerical challenges due to the coupling between flow and pressure. Using an implicit time integration setting can lead to an ill-conditioned tangent matrix that causes deterioration in performance of traditional iterative linear equation solvers (LS). In this paper we present a novel and efficient preconditioner (PC) for this class of problems that exploits the strong coupling between the flow and pressure. We implement this PC in a LS algorithm designed for solving systems of equations governing incompressible flows. Excellent efficiency and stability properties of the proposed method are illustrated on a set of clinically relevant hemodynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi S (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(45–46):3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, Chichester

    Book  Google Scholar 

  4. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259

    Article  MathSciNet  MATH  Google Scholar 

  5. Canfield MA, Honein MA, Yuskiv N, Xing J, Mai CT, Collins JS, Ramadhani TA, Hobbs CA, Kirby RS (2006) National estimates and race/ethnic-specific variation of selected birth defects in the united states, 1999–2001. Birth Defects Res Part A Clin Mol Teratol 76(11):747–756

    Article  Google Scholar 

  6. Carey GF, Jiang B-N (1987) Nonlinear preconditioned conjugate gradient and least-squares finite elements. Comput Methods Appl Mech Eng 62(2):145–154

    Article  MathSciNet  MATH  Google Scholar 

  7. Esmaily-Moghadam M, Bazilevs Y, Hsia TY, Vignon-Clementel I, Marsden AL (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48(3):277–291

    Article  MathSciNet  MATH  Google Scholar 

  8. Esmaily-Moghadam M, Migliavacca F, Vignon-Clementel IE, Hsia TY, Marsden AL (2012) Optimization of shunt placement for the Norwood surgery using multi-domain modeling. J Biomech Eng 134(5):051002

    Article  Google Scholar 

  9. Esmaily-Moghadam M, Vignon-Clementel IE, Figliola R, Marsden AL (2012) A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J Comput Phys. doi:10.1016/j.jcp.2012.07.035

  10. Fischer PF (1998) Projection techniques for iterative solution of Ax\(=\)b with successive right-hand sides. Comput Methods Appl Mech Eng 163(1):193–204

    Article  MATH  Google Scholar 

  11. Franca LP, Frey SL (1992) Stabilized finite element methods: II. The incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 99(2–3):209–233

    Article  MathSciNet  MATH  Google Scholar 

  12. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-[alpha] method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319

    Article  MathSciNet  MATH  Google Scholar 

  13. Kim HJ, Vignon-Clementel IE, Figueroa CA, Ladisa JF, Jansen KE, Feinstein JA, Taylor CA (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Annu Rev Biomed Eng 37:2153–2169

    Article  Google Scholar 

  14. Kuprat AP, Kabilan S, Carson JP, Corley RA, Einstein DR (2012) A bidirectional coupling procedure applied to multiscale respiratory modeling. J Comput Phys. doi:10.1016/j.jcp.2012.10.021

  15. Lagana K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G (2005) Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J Biomech 38(5):1129–1141

    Article  Google Scholar 

  16. Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in the computation of incompressible flows. J Appl Mech 76(2): 021204

    Article  Google Scholar 

  17. Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43(1):73–80

    Article  MathSciNet  MATH  Google Scholar 

  18. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46(1):83–89

    Article  MATH  Google Scholar 

  19. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65(1–3):135–149

    Article  MathSciNet  MATH  Google Scholar 

  20. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48(3):377–384

    Article  MATH  Google Scholar 

  21. Migliavacca F, Pennati G, Dubini G, Fumero R, Pietrabissa R, Urcelay G, Bove EL, Hsia TY, de Leval MR (2001) Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Heart Circ Physiol 280:H2076–H2086

    Google Scholar 

  22. Nigro N, Storti M, Idelsohn S, Tezduyar T (1998) Physics based GMRES preconditioner for compressible and incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 154(3):203–228

    Article  MATH  Google Scholar 

  23. Saad Y (1996) Iterative methods for sparse linear systems, vol 620. PWS publishing company, Boston

    MATH  Google Scholar 

  24. Saad Y, Schultz MH (1983) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. Technical Report YALEU/DCS/RR-254, Department of Computer Science, Yale University

  25. Schmidt JP, Delp SL, Sherman MA, Taylor CA, Pande VS, Altman RB (2008) The Simbios National Center: systems biology in motion. Proc IEEE 96(8):1266–1280 special issue on computational system biology

    Article  Google Scholar 

  26. Sengupta D, Kahn A, Burns J, Sankaran S, Shadden S, Marsden A (2012) Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease. Biomech Model Mechanobiol 11:915–932

    Article  Google Scholar 

  27. Shakib F, Hughes TJR, Johan Z (1989) A multi-element group preconditioned gmres algorithm for nonsymmetric systems arising in finite element analysis. Comput Methods Appl Mech Eng 75 (1–3):415–456

    Google Scholar 

  28. Sherman J, Morrison WJ (1950) Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann Math Stat 21(1):124–127

    Article  MathSciNet  MATH  Google Scholar 

  29. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    Article  MathSciNet  MATH  Google Scholar 

  30. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43(5):555–575

    Article  MathSciNet  MATH  Google Scholar 

  31. Tezduyar TE, Behr M, Aliabadi SK, Mittal S, Ray SE (1992) A new mixed preconditioning method for finite element computations. Comput Methods Appl Mech Eng 99(1):27–42

    Article  MathSciNet  MATH  Google Scholar 

  32. Tezduyar TE, Liou J (1989) Grouped element-by-element iteration schemes for incompressible flow computations. Comput Phys Commun 53(1):441–453

    Article  MathSciNet  MATH  Google Scholar 

  33. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95(2):221–242

    Article  MATH  Google Scholar 

  34. Tezduyar TE, Sameh A (2006) Parallel finite element computations in fluid mechanics. Comput Methods Appl Mech Eng 195(13):1872–1884

    Article  MathSciNet  MATH  Google Scholar 

  35. Tezduyar TE, Sathe S (2004) Enhanced-approximation linear solution technique (EALST). Comput Methods Appl Mech Eng 193(21):2033–2049

    Article  MathSciNet  MATH  Google Scholar 

  36. Tezduyar TE, Sathe S (2005) Enhanced-discretization successive update method (EDSUM). Int J Numer Methods Fluids 47 (6–7):633–654

    Google Scholar 

  37. Tezduyar TE, Sathe S (2007) Modelling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54(6–8):855–900

    Article  MathSciNet  MATH  Google Scholar 

  38. Tikkanen J, Heinonen OP (1994) Risk factors for hypoplastic left heart syndrome. Teratology 50(2):112–117

    Article  Google Scholar 

  39. Urquiza SA, Blanco PJ, Venere MJ, Feijoo RA (2006) Multidimensional modelling for the carotid artery blood flow. Comput Methods Appl Mech Eng 195(33–36):4002–4017

    Article  MathSciNet  MATH  Google Scholar 

  40. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195(29–32):3776–3796

    Google Scholar 

  41. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for three-dimensional simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Eng 13(5):625–640

    Article  Google Scholar 

  42. Washio T, Hisada T, Watanabe H, Tezduyar TE (2005) A robust preconditioner for fluid–structure interaction problems. Comput Methods Appl Mech Eng 194(39):4027–4047

    Article  MathSciNet  MATH  Google Scholar 

  43. Whiting CH, Jansen KE (2001) A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int J Numer Methods Fluids 35(1):93–116

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by a Leducq Foundation Network of Excellent Grant, a Burroughs Wellcome Fund Career Award at the Scientific Interface, NIH grant RHL102596A, and the NSF CAREER Awards OCI 1150184 and 1055091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Bazilevs.

Additional information

Alison L. Marsden is a part of the Modeling Of Congenital Hearts Alliance (MOCHA). MOCHA Investigators are: Edward Bove MD and Adam Dorfman MD (University of Michigan, USA); Andrew Taylor MD, Alessandro Giardini MD, Sachin Khambadkone MD, Marc de Leval MD, Silvia Schievano PhD, and T-Y Hsia MD (Institute of Child Health, UK); G. Hamilton Baker MD and Anthony Hlavacek (Medical University of South Carolina, USA); Francesco Migliavacca PhD, Giancarlo Pennati PhD, and Gabriele Dubini PhD (Politecnico di Milano, Italy); Richard Figliola PhD and John McGregor PhD (Clemson University, USA); Alison Marsden PhD (University of California, San Diego, USA); Irene Vignon-Clementel (National Institute of Research in Informatics and Automation, France).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esmaily-Moghadam, M., Bazilevs, Y. & Marsden, A.L. A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput Mech 52, 1141–1152 (2013). https://doi.org/10.1007/s00466-013-0868-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0868-1

Keywords

Navigation