Skip to main content
Log in

Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a specific application of the fluid-solid interface-tracking/interface-capturing technique (FSITICT) for solving fluid-structure interaction. Specifically, in the FSITICT, we choose as interface-tracking technique the arbitrary Lagrangian–Eulerian method and as interface-capturing technique the fully Eulerian approach, leading to the Eulerian-arbitrary Lagrangian–Eulerian (EALE) technique. Using this approach, the domain is partitioned into two sub-domains in which the different methods are used for the numerical solution. The discretization is based on a monolithic solver in which finite differences are used for temporal integration and a Galerkin finite element method for spatial discretization. The nonlinear problem is treated with Newton’s method. The method combines advantages of both sub-frameworks, which is demonstrated with the help of some benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tezduyar T, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interaction. Int J Numer Methods Fluids 64:1201–1218

    Article  MATH  Google Scholar 

  2. Tezduyar T (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8(2):83–130

    Article  MathSciNet  MATH  Google Scholar 

  3. Donéa J, Fasoli-Stella P, Giuliani S (1977) Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems. In: Trans. 4th international conference on structural mechanics in reactor technology, p B1/2

  4. Hirt C, Amsden A, Cook J (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14:227–253

    Article  MATH  Google Scholar 

  5. Hughes T, Liu W, Zimmermann T (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MathSciNet  MATH  Google Scholar 

  6. Noh W (1964) A time-dependent two-space-dimensional coupled Eulerian-Lagrangian code. Academic Press, New York, pp 117–179

    Google Scholar 

  7. Dunne T (2006) An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaption. Int J Numer Methods Fluids 51:1017–1039

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu C, Walkington N (2001) An Eulerian description of fluids containing visco-elastic particles. Arch Rat Mech Anal 159: 229–252

    Google Scholar 

  9. Wick T (2012) Coupling of fully Eulerian with arbitrary Lagrangian–Eulerian coordinates for fluid-structure interaction. Under review in CMAME

  10. Tezduyar T (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195:2983–3000

    Article  MathSciNet  MATH  Google Scholar 

  11. Akin JE, Tezduyar T, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11

    Article  MATH  Google Scholar 

  12. Cruchaga M, Celentano D, Tezduyar T (2007) A numerical model based on the mixed interface-tracking/ interface-capturing technique (MITICT). Int J Numer Methods Fluids 54:1021–1030

    Article  MATH  Google Scholar 

  13. Takizawa K, Spielman T, Tezduyar T (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364

    Article  MATH  Google Scholar 

  14. Tezduyar T (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    Article  MathSciNet  MATH  Google Scholar 

  15. Tezduyar T, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351

    Article  MathSciNet  MATH  Google Scholar 

  16. Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces: the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Engrg 94:353–371

    Article  MathSciNet  MATH  Google Scholar 

  17. Tezduyar T, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid-structure interaction with space-time formulations. Comput Methods Appl Mech Eng 195(41–43):5743–5753

    Article  MathSciNet  MATH  Google Scholar 

  18. Tezduyar T, Aliabadi S (2000) EDICT for 3D computation of two-fluid interfaces. Comput Methods Appl Mech Eng 190:403–410

    Article  MATH  Google Scholar 

  19. Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155:235–248

    Article  MATH  Google Scholar 

  20. Asterino M, Gerbeau JF, Pantz O, Traoré KF (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198:3603–3612

    Article  Google Scholar 

  21. Baaijens F (2001) A fictitious domain/mortar element method for fluid-structure interaction. Int J Numer Methods Fluids 35(7):743–761

    Article  MathSciNet  MATH  Google Scholar 

  22. Ceniceros HD, Fisher JE, Roma AM (2009) Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method. J Comput Phys 228:7137–7158

    Article  MathSciNet  MATH  Google Scholar 

  23. van Loon R, Anderson P, van de Vosse F (2006) A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217:806–823

    Article  MathSciNet  MATH  Google Scholar 

  24. Peskin C (2002) The immersed boundary method. Acta numerica 200. Cambridge University Press, Cambridge

    Google Scholar 

  25. Santos NDD, Gerbeau JF, Bourgat J (2008) A partitioned fluid-structure algorithm for elastic thin valves with contact. Comput Methods Appl Mech Eng 197(19–20):1750–1761

    Article  MATH  Google Scholar 

  26. Hron J (2001) Fluid structure interaction with applications in biomechanics. Ph.D. thesis. Charles University Prague

  27. Hron J, Turek S (2006) A monolithic FEM/multigrid solver for ALE formulation of fluid structure with application in biomechanics. Springer, Berlin, pp 146–170

    Google Scholar 

  28. Huebner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid structure interaction using space-time finite elements. Comput Methods Appl Mech Eng 193(23–26):2087–2104. doi:10.1016/j.cma.2004.01.024

    Article  MATH  Google Scholar 

  29. Bazilevs Y, Calo VM, Hughes T, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    Article  MathSciNet  MATH  Google Scholar 

  30. Bungartz HJ, Schäfer M (2006) Fluid-structure interaction: modelling, simulation, optimization, lecture notes in computational science and engineering, vol. 53. Springer, Berlin

    Book  Google Scholar 

  31. Tezduyar T, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900

    Article  MathSciNet  MATH  Google Scholar 

  32. Tezduyar T, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027

    Article  MathSciNet  MATH  Google Scholar 

  33. Richter T (2012) A fully Eulerian formulation for fluid-structure interaction problems. J Comput Phys 233:227–240

    Article  Google Scholar 

  34. Richter T, Wick T (2010) Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput Methods Appl Mech Eng 199:2633–2642

    Article  MathSciNet  MATH  Google Scholar 

  35. Wick T (2012) Fully Eulerian fluid-structure interaction for time-dependent problems. Comput Methods Appl Mech Eng 255:14–26. doi:10.1016/j.cma.2012.11.009

    Article  MathSciNet  Google Scholar 

  36. Cottet GH, Maitre E, Mileent T (2008) Eulerian formulation and level set models for incompressible fluid-structure interaction. Math Modell Numer Anal 42:471–492

    Article  MATH  Google Scholar 

  37. He P, Qiao R (2011) A full-Eulerian solid level set method for simulation of fluid-structure interactions. Microfluid Nanofluid 11:557–567

    Article  Google Scholar 

  38. Sugiyama K, Li S, Takeuchi S, Takagi S, Matsumato Y (2011) A full Eulerian finite difference approach for solving fluid-structure interacion. J Comput Phys 230:596–627

    Article  MathSciNet  MATH  Google Scholar 

  39. Takagi S, Sugiyama K, Matsumato Y (2012) A review of full Eulerian mehtods for fluid structure interaction problems. J Appl Mech 79(1):7

    Article  Google Scholar 

  40. Zhao H, Freund J, Moser R (2008) A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J Comput Phys 227(6):3114–3140

    Article  MathSciNet  MATH  Google Scholar 

  41. Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194:4506–4527

    Article  MathSciNet  MATH  Google Scholar 

  42. Formaggia L, Quarteroni A, Veneziani A (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system. Springer, Milano

    Book  Google Scholar 

  43. Wick T (2011) Adaptive finite element simulation of fluid-structure interaction with application to heart-valve dynamics. Ph.D. thesis. University of Heidelberg

  44. Wick T (2011) Fluid-structure interactions using different mesh motion techniques. Comput Struct 89(13–14):1456–1467

    Article  Google Scholar 

  45. Davis TA, Duff IS (1997) An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J Matrix Anal Appl 18(1):140–158

    Article  MathSciNet  MATH  Google Scholar 

  46. Wick T (2012) Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal.ii library. Archive for Numerical Software, accepted, Vol. 1, pp. 1–19, Preprint available at IWR Heidelberg

  47. Bangerth W, Heister T, Kanschat G (2012) Differential equations analysis library

  48. Adams RA (1975) Sobolev spaces. Academic Press, New York

  49. Wloka J (1982) Partielle differentialgleichungen. B. G. Teubner, Stuttgart

  50. Ciarlet PG (1984) Mathematical elasticity: three dimensional elasticity. North-Holland, Amsterdam

    Google Scholar 

  51. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159

    Article  MATH  Google Scholar 

  52. Johnson AA, Tezduyar T (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94

    Article  MATH  Google Scholar 

  53. Sackinger PA, Schunk PR, Rao RR (2005) A Newton-Raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation. J Comput Phys 125(1):83–103

    Article  MathSciNet  Google Scholar 

  54. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58–63

    Article  MATH  Google Scholar 

  55. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26:27–36

    Article  Google Scholar 

  56. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods space-time formulations, iterative strategies and massively parallel implementations, new methods in transient analysis, PVP-Vol. 246, AMD-Vol. 143, vol. 143, pp. 7–24. ASME, New York

  57. Sethian J, Smereka P (2003) Level set methods for fluid interface. Annual Review

  58. Rannacher R (1986) On the stabilization of the Crank-Nicolson scheme for long time calculations, University des Saarlandes, Preprint

  59. Ciarlet PG (1987) The finite element method for elliptic problems, 2. pr. edn. North-Holland, Amsterdam

    Google Scholar 

  60. Girault V, Raviart PA (1986) Finite element method for the Navier-Stokes equations. Number 5 in computer series in computational mathematics. Springer, Berlin

    Google Scholar 

  61. Fernández F, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid-structure coupling. Comput Struct 83:127–142

    Article  Google Scholar 

  62. Brooks A, Hughes T (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259

    Article  MathSciNet  MATH  Google Scholar 

  63. Belytschko T, Parimi C, Moes N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56:609–635

    Article  MATH  Google Scholar 

  64. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  65. Hron J, Turek S (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Springer, Berlin, pp 146–170

    Google Scholar 

  66. Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int J Numer Methods Fluids 22:325–352

    Article  MathSciNet  MATH  Google Scholar 

  67. Wick T (2011) Stability estimates and numerical comparison of second order time-stepping schemes for fluid-structure interactions. In: Numerical mathematics and advanced applications 2011. ENUMATH 2011 in Leicester, UK

Download references

Acknowledgments

I am grateful to Rolf Rannacher (Heidelberg) for the possibility to start working on this topic. Since I moved in the meantime to ICES (UT Austin), many thanks to Mary F. Wheeler (Center for Subsurface Modeling at ICES, Austin) for the possibility to finish this work. Moreover, I thank Marie-Cécile Wick and Elisa A. M. Wick for their patience because final preparation and the revised version were pure weekend work. Finally, I would like to thank both reviewers for their valuable comments which improved a lot the value of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wick, T. Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations. Comput Mech 52, 1113–1124 (2013). https://doi.org/10.1007/s00466-013-0866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0866-3

Keywords

Mathematics Subject Classification (2000)

Navigation