Skip to main content
Log in

Local enrichment of the finite cell method for problems with material interfaces

  • Review Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes an efficient, hierarchical high-order enrichment approach for the finite cell method applied to problems of solid mechanics involving discontinuities and singularities. In contrast to the standard extended finite element method, where new degrees of freedom are introduced for all finite elements located in the enrichment zone, we define the enrichment on a so-called overlay mesh which is superimposed over the base mesh. The approximation on the base mesh is obtained by means of the finite cell method where the hp-d method is employed to introduce the hierarchical extension on the overlay mesh. We present two different strategies for defining the enrichment on the superimposed overlay mesh. In the first approach, the enrichment is based on a local h-, p- or hp-refinement utilizing the finite element method on the overlay mesh. Alternatively, the enrichment is constructed by means of the partition of unity method introducing carefully selected enrichment functions suitable for the problem at hand. Our results reveal that the proposed method improves the accuracy of the finite cell method significantly with only a minimum number of additional degrees of freedom. In this paper we will focus on examples with material interfaces although the method can also be applied to problems involving strong discontinuities and singularities. Accurate stress distribution and an exponential rate of convergence are the two striking characteristics of the proposed method. Due to the hierarchical approach it paves the way to using different approaches for the approximation on the base and the overlay mesh and accordingly allows multiscale problems to be addressed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: towards indegration of CAD and FEM. Wiley

  2. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 64:131–150

    Article  Google Scholar 

  3. Duarte C, Babuška I, Oden J (2000) Generalized finite element method for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232

    Article  Google Scholar 

  4. Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200

    Article  MATH  Google Scholar 

  5. Kim DJ, Pereira JP, Duarte CA (2010) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshes. Int J Numer Methods Eng 81:335–365

    MATH  Google Scholar 

  6. Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63:760–788

    Article  MATH  Google Scholar 

  7. Guidault P, Allix O, Champaney L, Cornuault C (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197:381–399

    Article  MATH  Google Scholar 

  8. Giner E, Sukumar N, Denia F, Fuenmayor F (2008) Extended finite element method for fretting fatigue crack propagation. Int J Solids Struct 45:5675–5687

    Article  MATH  Google Scholar 

  9. Chessa J, Smolinski P, Belytschko T (2002) The extended finite element method (xfem) for solidification problems. Int J Numer Methods Eng 53:1959–1977

    Article  MathSciNet  MATH  Google Scholar 

  10. Groß S, Reusken A (2007) An extended pressure finite element space for two-phase incompressible flows with surface tension. J Comput Phys 224:40–58

    Google Scholar 

  11. Gerstenberger A, Wall W (2008) An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction. Comput Methods Appl Mech Eng 197:1699–1714

    Article  MathSciNet  MATH  Google Scholar 

  12. Mayer UM, Gerstenberger A, Wall WA (2009) Interface handling for three-dimensional higher-order xfem-computations in fluidstructure interaction. Int J Numer Methods Eng 79: 846–869

    Google Scholar 

  13. Glowinski R, Kuznetsov Y (2007) Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196:1498–1506

    Article  MathSciNet  MATH  Google Scholar 

  14. Ramiàere I, Angot P, Belliard M (2007) A general fictitious domain method with immersed jumps and multilevel nested structured meshes. J Comput Phys 225:1347–1387

    Article  MathSciNet  Google Scholar 

  15. Parvizian J, Düster A, Rank E (2007) Finite cell method—h- and p-extension for embedded domain problems in solid mechanics. Comput Mech 41:121–133

    Article  MathSciNet  MATH  Google Scholar 

  16. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782

    Article  MATH  Google Scholar 

  17. Rank E, Ruess M, Kollmannsberger S, Schillinger D, Düster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249–252: 104–115

  18. Düster A, Sehlhorst HG, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 50:413–431

    Google Scholar 

  19. Parvizian J, Düster A, Rank E (2011) Topology optimization using the finite cell method. Optimiz Eng 13:1–22

    Google Scholar 

  20. Düster A, Parvizian J, Yang Z, Rank E (2007) A high order fictitious domain method for patient specific surgery planning. In: Proceedings of APCOM’07 in conjunction with EPMESC XI. Kyoto, Japan

  21. Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2012) The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11:425–437

    Google Scholar 

  22. Ruess M, Schillinger D, Bazilevs Y, Rank E (2011) The B-spline version of the finite cell method for linear and nonlinear analysis of complex geometry. In: IGA conference. Austin, Texas

  23. Yang Z, Kollmannsberger S, Düster A, Ruess M, Garcia E, Burgkart R, Rank E (2012) Non-standard bone simulation: interactive numerical analysis by computational steering. Comput Vis Sci 14:207–216

    Article  Google Scholar 

  24. Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based finite cell method. Int J Numer Methods Eng 91:457–471

    Article  Google Scholar 

  25. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput Mech 50:445–478

    Google Scholar 

  26. Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2010) The finite cell method for elasto-plastic problems. In: Proceedings of the tenth international conference on computational structures technology (Civil-Comp Press)

  27. Rank E, Kollmannsberger S, Sorger C, Düster A (2011) Shell finite cell method: a high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200:3200–3209

    Article  MATH  Google Scholar 

  28. Schillinger D, Rank E (2011) An unfitted \(hp\) adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput Methods Appl Mech Eng 200: 3358–3380

    Google Scholar 

  29. Schillinger D, Düster A, Rank E (2012) The \(hp\)-\(d\)-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numerl Methods Eng 89:1171–1202

    Article  MATH  Google Scholar 

  30. Chen Q, Babuška I (1995) Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput Methods Appl Mech Eng 128:405–417

    Article  MATH  Google Scholar 

  31. Szabó B, Babuška I (1991) Finite element analysis. Wiley

  32. Szabó B, Düster A, Rank E (2004) The p-version of the Finite Element Method. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1, Chap 5. Wiley, pp 119–139

  33. Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52:673–703

    Article  MATH  Google Scholar 

  34. Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2012) Performance of different integration schemes in facing discontinuites in the Finite Cell Method. Int J Comput Methods 10:1350002

    Article  Google Scholar 

  35. Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng 66:761–795

    Article  MathSciNet  MATH  Google Scholar 

  36. Moumnassi M, Belouettar J, Béchet E, Bordas S, Potier-Ferry QDM (2011) Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. Comput Method Appl Mech Eng 200:5–8

    Article  Google Scholar 

  37. Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Computl Mech 47:535–554

    Article  MathSciNet  MATH  Google Scholar 

  38. Cheng K, Fries TP (2009) Higher-order XFEM for curved strong and weak discontinuities. Int J Numer Methods Eng 82:564–590

    MathSciNet  Google Scholar 

  39. Abdelaziz Y, Hamouine A (2008) A survey of the extended finite element. Comput Struct 86:1141–1151

    Google Scholar 

  40. Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17:043001

    Article  Google Scholar 

  41. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253–304

    MathSciNet  MATH  Google Scholar 

  42. Rank E (1992) Adaptive remeshing and h-p domain decomposition. Comput Methods Appl Mech Eng 101:299–313

    Article  MATH  Google Scholar 

  43. Rank E, Krause R (1997) A multiscale finite-element-method. Comput Struct 64:139–144

    Google Scholar 

  44. Krause R, Rank E (2003) Multiscale computations with a combination of the h- and p-versions of the finite-element method. Comput Methods Appl Mech Eng 192:3959–3983

    Article  MATH  Google Scholar 

  45. Düster A, Niggl A, Rank E (2007) Applying the \(hp\)-\(d\) version of the FEM to locally enhance dimensionally reduced models. Comput Methods Appl Mech Eng 196:3524–3533

    Article  MATH  Google Scholar 

  46. Erbts P, Düster A (2012) Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains. Comput Math Appl 64:2408–2430

    Article  MathSciNet  MATH  Google Scholar 

  47. Krause R (1996) Multiscale computations with a combined h- and p-version of the finite-element method. Ph.D. thesis, Fach Numerische Methoden und Informationsverarbeitung, Universität Dortmund

  48. Lee SH, Song JH, Yoon YC, Zi G, Belytschko T (2004) Combined extended and superimposed finite element method for cracks. Int J Numer Methods Eng 59:1119–1136

    Article  MATH  Google Scholar 

  49. Dréau K, Chevaugeon N, Moës N (2010) Studied x-fem enrichment to handle material interfaces with higher order finite element. Comput Methods Appl Mech Eng 199:1922–1936

    Google Scholar 

  50. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177

    Article  MATH  Google Scholar 

  51. Eaton JW (2002) GNU Octave Manual. Network Theory Limited

  52. Düster A, Kollmannsberger S (2010) AdhoC\(^{4}\)—User’s Guide. Lehrstuhl für Computation in Engineering, TU München, Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik, TU Hamburg-Harburg

  53. Királyfalvi G, Szabó B (1997) Quasi-regional mapping for the p-version of the finite element method. Finite Elements Anal Des 27:85–97

    Google Scholar 

  54. http://www.simulia.com/

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Deutsche Forschungsgemeinschaft (DFG) under grant DU405/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Joulaian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joulaian, M., Düster, A. Local enrichment of the finite cell method for problems with material interfaces. Comput Mech 52, 741–762 (2013). https://doi.org/10.1007/s00466-013-0853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0853-8

Keywords

Navigation