Skip to main content
Log in

Modeling a smooth elastic–inelastic transition with a strongly objective numerical integrator needing no iteration

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

An Erratum to this article was published on 29 November 2014

Abstract

Large deformation evolution equations for elastic distortional deformation and isotropic hardening/softening have been developed that model a smooth elastic–inelastic transition for both rate-independent and rate-dependent response with no need for loading–unloading conditions. A novel special case is a rate-independent overstress model. Specific simplified constitutive equations are proposed that capture the main effects of elastic-plastic and elastic-viscoplastic materials with only a few material parameters. Moreover, a robust and strongly objective numerical integrator for these simplified evolution equations has been developed which needs no iteration. Examples show the influence of the various parameters on the predicted material response. The smoothness of the elastic–inelastic transition in the proposed model, with the associated overstress, tends to spread the inelastic region. This side effect prevents severe deformation from being localized in an element region that continues to reduce in size with mesh refinement. However, preliminary calculations indicate the need for additional modeling of a material characteristic length that independently controls the size of a localized severely deformed region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. ABAQUS, Version 6.9EF1. ABAQUS, SIMULA

  2. Asaro RJ (1983) Micromechanics of crystals and polycrystals. Adv Appl Mech 23:1–115

    Google Scholar 

  3. Besseling JF (1966) A thermodynamic approach to rheology. In: Parkus H, Sedov LI (eds) Proceedings of IUTAM symposium on irreversible aspects of continuum mechanics, Vienna. Springer, Wein, vol 1968, pp 16–53

  4. de Borst R, Sluys LJ (1991) Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput Methods Appl Mech Eng 90:805–827

    Article  Google Scholar 

  5. Eckart C (1948) The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys Rev 73:373–382

    Article  MathSciNet  MATH  Google Scholar 

  6. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–362

    Google Scholar 

  7. Flory P (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838

    Article  MathSciNet  Google Scholar 

  8. Fung YC (1993) Biomechanics, mechanical properties of living tissues, 2nd edn. Springer, New York

    Google Scholar 

  9. Hill R, Rice JR (1972) Constitutive analysis of elastic-plastic crystals at arbitrary strain. J Mech Phys Solids 20:401–413

    Article  MATH  Google Scholar 

  10. Leonov AI (1976) Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheologica Acta 15:85–98

    Article  MATH  Google Scholar 

  11. Malvern LE (1951) The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect. ASME J Appl Mech 18:203–208

    MathSciNet  Google Scholar 

  12. Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Methods Appl Mech Eng 67:69–85

    Article  MATH  Google Scholar 

  13. Pan J, Saje M, Needleman A (1983) Localization of deformation in rate sensitive porous plastic solids. Int J Fract 21:261–278

    Article  Google Scholar 

  14. Papes O (2012) Nonlinear continuum mechanics in modern engineering applications. Ph.D. dissertation DISS ETH NO 19956, ETH Zurich

  15. Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Q Appl Math 20:321–332

    MathSciNet  MATH  Google Scholar 

  16. Peirce D, Asaro RJ, Needleman A (1982) An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall 30:1087–1119

    Article  Google Scholar 

  17. Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metall 31:1951–1976

    Article  Google Scholar 

  18. Rubin MB (1991) A simple and convenient isotropic failure surface. ASCE J Eng Mech 117:348–369

    Article  Google Scholar 

  19. Rubin MB (1994) Plasticity theory formulated in terms of physically based microstructural variables—part I: theory. Int J Solids Struct 31:2615–2634

    Article  MATH  Google Scholar 

  20. Rubin MB, Rosenau P, Gottlieb O (1995) A continuum model of dispersion caused by an inherent material characteristic length. J Appl Phys 77:4054–4063

    Article  MATH  Google Scholar 

  21. Rubin MB (1996) On the treatment of elastic deformation in finite elastic-viscoplastic theory. Int J Plast 12:951–965

    Article  MATH  Google Scholar 

  22. Rubin MB (2001) Physical reasons for abandoning plastic deformation measures in finite plasticity and viscoplasticity theory. Arch Mech 53:519–539

    MATH  Google Scholar 

  23. Rubin MB (2012) Removal of unphysical arbitrariness in constitutive equations for elastically anisotropic nonlinear elastic-viscoplastic solids. Int J Eng Sci 53:38–45

    Article  Google Scholar 

  24. Rubin MB, Attia A (1996) Calculation of hyperelastic response of finitely deformed elastic-viscoplastic materials. Int J Numer Methods Eng 39:309–320

    Article  MATH  Google Scholar 

  25. Rubin MB, Bodner SR (2002) A three-dimensional nonlinear model for dissipative response of soft tissues. Int J Solids Struct 39:5081–5099 (Corrigendum, 41, 1739–1740, 2004)

    Google Scholar 

  26. Rubin MB, Papes O (2011) Advantages of formulating evolution equations for elastic-viscoplastic materials in terms of the velocity gradient instead of the spin tensor. J Mech Mater Struct 6:229–243

    Google Scholar 

  27. Simo JC (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng 99:61–112

    Google Scholar 

  28. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

Download references

Acknowledgments

The work of M Hollenstein was supported by the Israel Science Foundation (103/08) founded by the Israel Academy of Science. This research was partially supported by MB Rubin’s Gerard Swope Chair in Mechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rubin.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00466-014-1099-9.

Appendix: Details of the numerical implementation

Appendix: Details of the numerical implementation

The constitutive equations described in the above sections were implemented into the commercial finite element package—ABAQUS [1] for the numerical investigation of realistic problems. Specifically, ABAQUS allows users to program a user subroutine called UMAT, where it is possible to implement general material constitutive equations. In the UMAT user subroutine, ABAQUS provides the subroutine with the deformation gradient F and the UMAT provides ABAQUS with the Cauchy stress T and the local tangent stiffness. Specifically, with the help of (3.1) and (6.2) the Cauchy stress T and the Kirchhoff stress \(\varvec{\uptau }\) are given by

$$\begin{aligned} \mathbf{T}=\text{ K}\left({\text{ J}-1}\right)\mathbf{I}+\text{ J}^{-1}\upmu \mathbf{B}_\mathrm{e}^{\prime \prime }, \varvec{\uptau } =\text{ J}\mathbf{T}. \end{aligned}$$
(10.1)

Taking the material derivative of \(\varvec{\uptau }\) it can be shown that

$$\begin{aligned} \text{ J}^{-1}\left[\varvec{{\dot{\uptau }}-\mathbf{W}\varvec{\uptau }-\varvec{\uptau } \mathbf{W}^\mathrm{{T}}}\right]=\mathbf{K}\cdot \mathbf{D}-\left[{\text{ a}_0 +\text{ a}_{1}\left\langle \text{ g}\right\rangle }\right]\mathbf{T}^{\prime }, \end{aligned}$$
(10.2)

where the stiffness tensor K based on the Jauman–Zaremba stress rate is defined so that

$$\begin{aligned} \mathbf{K}\cdot \mathbf{D}&= \mathbf{DT}+\mathbf{TD}+\text{ K}\left({\text{2J}-1} \right)\left({\mathbf{D}\cdot \mathbf{I}}\right)\mathbf{I}-\text{2K}\left({\text{ J}-1}\right)\mathbf{D}\nonumber \\&+\frac{2}{3}\text{ J}^{-1}\upmu \left({\mathbf{B}_{\mathrm{e}}^{\prime } \cdot \mathbf{I}} \right)\mathbf{D}^{\prime }-\frac{2}{3}\left({\mathbf{T}^{\prime }\cdot \mathbf{D}}\right)\mathbf{I}-\frac{2}{3}\left({\mathbf{D}\cdot \mathbf{I}} \right)\mathbf{T}^{\prime }\nonumber \\&-\left[{\left({\frac{2}{3{\dot{\upvarepsilon }}}} \right)\left({\text{ b}_0 +\text{ b}_1 \left\langle \text{ g} \right\rangle }\right)\mathbf{D}^{\prime }\cdot \mathbf{D}}\right]\mathbf{T}^{\prime }. \end{aligned}$$
(10.3)

Moreover, the rectangular Cartesian component \(\text{ K}_\mathrm{ijmn}\) of K can be written in terms of the rectangular Cartesian component \(\left\{ {\text{ D}_\mathrm{{ij}},\text{ T}_\mathrm{{ij}}, \text{ T}_\mathrm{{ij}}^{\prime }}\right\} \) of \(\left\{ {\mathbf{D, T, T}^{{\prime }}}\right\} \) and the Kronecker delta symbol \(\updelta _\mathrm{{ij}}\) in the form

$$\begin{aligned} \text{ K}_\mathrm{{ijmn}}&= {\updelta }_\mathrm{{im}} \text{ T}_\mathrm{{nj}} +\text{ T}_\mathrm{{im}} {\updelta }_\mathrm{{nj}} +\text{ K}\left({\text{2J}-1}\right){\updelta }_\mathrm{{ij}}{\updelta }_\mathrm{{mn}}\nonumber \\&-\mathrm{2K}\left({\text{ J}-1}\right){\updelta }_\mathrm{{im}} {\updelta }_\mathrm{{jn}} -\frac{2}{3}\left({{\updelta }_\mathrm{{ij}} \text{ T}_\mathrm{{mn}}^\prime +\text{ T}_\mathrm{{ij}}^\prime {\updelta }_\mathrm{{mn}}}\right)\nonumber \\&+\frac{2}{3}\text{ J}^{-1}\upmu {\alpha }_{1} \left({{\updelta }_\mathrm{{im}} {\updelta }_\mathrm{{jn}} -\frac{1}{3}{\updelta }_\mathrm{{ij}} {\updelta }_\mathrm{{mn}}} \right)\nonumber \\&-\left(\frac{2}{3{\dot{\upvarepsilon }}}\right)\left({\text{ b}_0 +\text{ b}_1 \left\langle \text{ g} \right\rangle } \right)\text{ T}_\mathrm{{ij}}^\prime \left({\text{ D}_\mathrm{{mn}} -\frac{1}{3}\text{ D}_\mathrm{{rr}} {\updelta }_\mathrm{{mn}}}\right).\nonumber \\ \end{aligned}$$
(10.4)

This expression for the stiffness tensor K was motivated by the work in [14] where different approximations of K on the numerical convergence rate were analyzed. Moreover, it is noted that this expression for K does not represent a consistent tangent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollenstein, M., Jabareen, M. & Rubin, M.B. Modeling a smooth elastic–inelastic transition with a strongly objective numerical integrator needing no iteration. Comput Mech 52, 649–667 (2013). https://doi.org/10.1007/s00466-013-0838-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0838-7

Keywords

Navigation