Skip to main content
Log in

On the stability of the non-symmetric BEM/FEM coupling in linear elasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we discuss the use of single and double layer boundary integral equations for the numerical solution of linear elasticity problems with boundary conditions of mixed type, and the one-equation coupling of finite and boundary element methods to solve a free space transmission problem. In particular we present a sufficient and necessary condition which ensures stability of the coupled approach for any choice of finite and boundary elements. These results justify the coupling of collocation and Galerkin one-equation boundary element methods with finite elements as used in many engineering and industrial applications. Hence one may avoid the use of the symmetric formulation of boundary integral equations, which is, although well established from a mathematical point of view and also used in some engineering applications, not so much accepted in particular in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnet M (1999) Boundary integral equation methods for solids and fluids. Wiley, Chichester

    Google Scholar 

  2. Brezzi F, Johnson C (1979) On the coupling of boundary integral and finite element methods. Calcolo 16: 189–201

    Article  MathSciNet  MATH  Google Scholar 

  3. Brink U, Stephan EP (2001) Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity. Numer Method Partial Differ Equ 17: 79–92

    Article  MathSciNet  MATH  Google Scholar 

  4. Costabel M (1987) Symmetric methods for the coupling of finite elements and boundary elements. In: Brebbia CA, Kuhn G, Wendland WL (eds) Boundary elements IX. Springer, Berlin, pp 411–420

    Google Scholar 

  5. Costabel M, Stephan EP (1990) Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J Numer Anal 27: 1212–1226

    Article  MathSciNet  MATH  Google Scholar 

  6. Gatica GN, Hsiao GC, Sayas F-J (2012) Relaxing the hypotheses of Bielak–MacCamy’s BEM–FEM coupling. Numer Math 120: 465–487

    Article  MathSciNet  MATH  Google Scholar 

  7. Han H (1994) The boundary integro-differential equations of three-dimensional Neumann problem in linear elasticity. Numer Math 68: 269–281

    Article  MathSciNet  MATH  Google Scholar 

  8. Hsiao GC (1990) The coupling of boundary element and finite element methods. Z Angew Math Mech 70: T493–503

    Article  Google Scholar 

  9. Hsiao GC, Steinbach O, Wendland WL (2000) Domain decomposition methods via boundary integral equations. J Comput Math 125: 521–537

    Article  MathSciNet  MATH  Google Scholar 

  10. Hsiao GC, Wendland WL (1977) A finite element method for some integral equations of the first kind. J Math Anal Appl 58: 449–481

    Article  MathSciNet  MATH  Google Scholar 

  11. Hsiao GC, Wendland WL (2008) Boundary integral equations. Applied mathematical sciences, vol 164. Springer, Berlin

    Book  Google Scholar 

  12. Johnson C, Nédélec J-C (1980) On the coupling of boundary integral and finite element methods. Math Comput 35: 1063–1079

    Article  MATH  Google Scholar 

  13. Kupradze VD (1979) Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. North-Holland, Amsterdam

    MATH  Google Scholar 

  14. McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Of G (2007) Fast multipole methods and applications. In: Schanz M, Steinbach O (eds) Boundary element analysis. Mathematical aspects and applications. Lecture notes in applied and computational mechanics, vol 29. Springer, Heidelberg, pp 135–160

    Google Scholar 

  16. Of G, Steinbach O (2003) A fast multipole boundary element method for a modified hypersingular boundary integral equation. In: Efendiev M, Wendland WL (eds) Proceedings of the international conference on multifield problems. Springer lecture notes in applied mechanics, vol 12. Springer, Berlin, pp 163–169

  17. Of G, Steinbach O (2011) Is the one-equation coupling of finite and boundary element methods always stable? Berichte aus dem Institut für Numerische Mathematik, Bericht 2011/6, TU Graz

  18. Of G, Steinbach O (2012) Stable coupling of finite element methods and one-equation boundary element methods. Berichte aus dem Institut für Numerische Mathematik, Bericht 2012/1, TU Graz

  19. Of G, Steinbach O, Urthaler P (2010) Fast evaluation of Newton potentials in boundary element methods. SIAM J Sci Comput 32: 585–602

    Article  MathSciNet  MATH  Google Scholar 

  20. Of G, Steinbach O, Wendland WL (2005) Applications of a fast multipole Galerkin boundary element method in linear elastostatics. Comput Visual Sci 8: 201–209

    Article  MathSciNet  Google Scholar 

  21. Rjasanow S, Steinbach O (2007) The fast solution of boundary integral equations. Mathematical and analytical techniques with applications to engineering. Springer, New York

    Google Scholar 

  22. Salvadori A (2010) Analytical integrations in 3D BEM for elliptic problems: evaluation and implementation. Int J Numer Methods Eng 84: 505–542

    MathSciNet  MATH  Google Scholar 

  23. Sauter SA, Schwab C (2011) Boundary element methods. Springer series in computational mathematics vol 39. Springer, Berlin

    Book  Google Scholar 

  24. Sayas F-J (2009) The validity of Johnson–Nédélec’s BEM-FEM coupling on polygonal interfaces. SIAM J Numer Anal 47: 3451–3463

    Article  MathSciNet  MATH  Google Scholar 

  25. Sirtori S (1979) General stress analysis method by means of integral equations and boundary elements. Meccanica 14: 210–218

    Article  MATH  Google Scholar 

  26. Steinbach O (1998) Fast solution techniques for the symmetric boundary element method in linear elasticity. Comput Methods Appl Mech Eng 157: 185–191

    Article  MathSciNet  MATH  Google Scholar 

  27. Steinbach O (2000) Mixed approximations for boundary elements. SIAM J Numer Anal 38: 401–413

    Article  MathSciNet  MATH  Google Scholar 

  28. Steinbach O (2003) A robust boundary element method for nearly incompressible linear elasticity. Numer Math 95: 553–562

    Article  MathSciNet  MATH  Google Scholar 

  29. Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems. Finite and boundary elements. Springer, New York

    Book  MATH  Google Scholar 

  30. Steinbach O (2011) A note on the stable one-equation coupling of finite and boundary element methods. SIAM J Numer Anal 49: 1521–1531

    Article  MathSciNet  MATH  Google Scholar 

  31. Steinbach O, Wendland W (2001) On C. Neumann’s method for second order elliptic systems in domains with non-smooth boundaries. J Math Anal Appl 262: 733–748

    MathSciNet  MATH  Google Scholar 

  32. Wendland WL (1988) On asymptotic error estimates for the combined BEM and FEM. In: Stein E, Wendland WL (eds) Finite element and boundary element techniques from mathematical and engineering point of view. CISM Lecture Notes, vol 301. Springer, Wien, pp 273–333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Steinbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbach, O. On the stability of the non-symmetric BEM/FEM coupling in linear elasticity. Comput Mech 51, 421–430 (2013). https://doi.org/10.1007/s00466-012-0782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0782-y

Keywords

Navigation