Skip to main content
Log in

A ‘FE-Meshfree’ TRIA3 element based on partition of unity for linear and geometry nonlinear analyses

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new 3-node triangular element is developed on the basis of partition of unity (PU) concept. The formulation employs the parametric shape functions of classical triangular element (TRIA3) to construct the PU and the least square point interpolation method to construct the local displacement approximation. The proposed element synergizes the individual merits of finite element method and meshfree method. Moreover, the usual linear dependence problem associated with PU finite elements is eliminated in the present element. Application of the element to several linear and geometric nonlinear problems shows that the proposed element gives a performance better than that of classical linear triangular as well as linear quadrilateral elements, and comparable to that of quadratic quadrilateral element. The proposed element does not necessitate a new mesh or additional nodes in the mesh. It uses the same mesh as the classical TRIA3 element and is able to give more accurate solution than the TRIA3 element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12): 1013–1024

    Article  Google Scholar 

  2. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181: 375–389

    MATH  Google Scholar 

  3. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37: 229–256

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139: 3–47

    Article  MATH  Google Scholar 

  5. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluid 20: 1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu WK, Jun S, Li SF, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38: 1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu GR, Gu YT (2001) A point interpolation method for two dimensional solid. Int J Numer Methods Eng 50: 937–951

    Article  MATH  Google Scholar 

  8. Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22: 117–127

    Article  MathSciNet  MATH  Google Scholar 

  9. Idelsohn SR, Onate E (2006) To mesh or not to mesh. That is the question. Comput Methods Appl Mech Eng 195: 4681–4696

    Article  MathSciNet  MATH  Google Scholar 

  10. Ooi ET, Rajendran S, Yeo JH, Zhang BR (2007) A mesh distortion tolerant 8-node solid element based on the partition of unity method with inter-element compatibility and completeness properties. Finite Elements Anal Des 43(10): 771–787

    Article  Google Scholar 

  11. Rajendran S, Zhang BR (2007) A “FE-Meshfree” QUAD4 element based on partition of unity. Comput Methods Appl Mech Eng 197: 128–147

    Article  MATH  Google Scholar 

  12. Rajendran S, Zhang BR, Liew KM (2009) A partition of unity-based ‘FE-Meshfree’ QUAD4 element for geometric non-linear analysis. Int J Numer Methods Eng 82(12): 1574–1608

    MathSciNet  Google Scholar 

  13. Zhang BR, Rajendran S (2008) ‘FE-Meshfree’ QUAD4 element for free-vibration analysis. Comput Methods Appl Mech Eng 197(45–48): 3595–3604

    Article  MATH  Google Scholar 

  14. Xu JP, Rajendran S (2011) A partition-of-unity based ‘FE-Meshfree’ QUAD4 element with radial-polynomial basis functions for static analyses. Comput Methods Appl Mech Eng 200(47-48): 3309–3323

    Article  MATH  Google Scholar 

  15. Cai YC, Zhuang XY, Augarde C (2010) A new partition of unity finite element free from the linear dependence problem and possessing the delta property. Comput Methods Appl Mech Eng 199: 1036–1043

    Article  MathSciNet  MATH  Google Scholar 

  16. Belytschko T, Organ D, Krongauz Y (1995) A coulped finite element-element-free Galerkin method. Comput Mech 17: 186–195

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiao QZ, Dhanasekar M (2002) Coupling of FE and EFG using collocation approach. Adv Eng Softw 33: 507–515

    Article  MATH  Google Scholar 

  18. Liu WK, Han WM, Lu HS, Li SF, Cao J (2004) Reproducing kernel element method. Part I: theoretical formulation. Comput Methods Appl Mech Eng 193: 933–951

    Article  MathSciNet  MATH  Google Scholar 

  19. Li SF, Lu HS, Han WM, Liu WK, Simkins DC (2004) Reproducing kernel element methods. Part II: globallly conforming I m/C n hierarchies. Comput Methods Appl Mech Eng 193: 953–987

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu HS, Li SF, Simkins DC Jr, Liu WK, Cao J (2004) Reproducing kernel element method. Part III: generalized enrichment and applications. Comput Methods Appl Mech Eng 193: 989–1011

    Article  MATH  Google Scholar 

  21. Simkins DC Jr, Li SF, Lu HS, Liu WK (2004) Reproducing kernel element method. Part IV: globally compatible C n (n ≥ 1) trianglular hierarchy. Comput Methods Appl Mech Eng 193: 1013–1034

    Article  MathSciNet  MATH  Google Scholar 

  22. Simkins DC Jr, Kumar A, Collier N, Whitenack LB (2007) Geometry representation, modification and iterative design using RKEM. Comput Methods Appl Mech Eng 196: 4304–4320

    Article  MATH  Google Scholar 

  23. Lu HS, Kim DW, Liu WK (2005) Treatment of discontinuity in the reproducing kernel element method. Int J Numer Methods Eng 63: 241–255

    Article  MATH  Google Scholar 

  24. Beissel SR, Gerlach CA, Johnson GR (2006) Hypervelocity impact computations with finite elements and meshfree particles. Int J Impact Eng 33: 80–90

    Article  Google Scholar 

  25. Gu YT, Zhang LC (2008) Coupling of the meshfree and finite element methods for determination of the crack tip fields. Eng Fract Mech 75(5): 986–1004

    Article  MathSciNet  Google Scholar 

  26. Hao S, Liu WK (2006) Moving particle finite element method with superconvergence: nodal integration formulation and applications. Comput Methods Appl Mech Eng 195: 6059–6072

    Article  MATH  Google Scholar 

  27. Dai KY, Liu GR, Nguyen TT (2007) An n-sided polygonal smoothed finite element method (n SFEM) for solid mechanics. Finite Elements Anal Des 43(11–12): 847–860

    Article  MathSciNet  Google Scholar 

  28. Babuska I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40: 727–758

    Article  MathSciNet  MATH  Google Scholar 

  29. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314

    Article  MathSciNet  MATH  Google Scholar 

  30. Oden JT, Duarte CAM, Zienkiewicz OC (1998) A new cloud-based hp-finite element method. Comput Methods Appl Mech Eng 153: 117–126

    Article  MathSciNet  MATH  Google Scholar 

  31. Oden JT, Duarte CAM, Zienkiewicz OC (1996) A new cloud-based hp-finite element method. TICAM Report 96-55

  32. Taylor RL, Zienkiewicz OC, Onate E (1998) A hierarchical finite element method based on the partition of unity. Comput Methods Appl Mech Eng 152: 73–84

    Article  MathSciNet  MATH  Google Scholar 

  33. Li SF, Liu WK (1999) Reproducing kernel hierarchical partition of unity, Part I: formulation and theory. Int J Numer Methods Eng 45: 251–288

    Article  MATH  Google Scholar 

  34. Li SF, Liu WK (1999) Reproducing kernel hierarchical partition of unity, Part II: applications. Int J Numer Methods Eng 45: 289–317

    Article  Google Scholar 

  35. Han WM, Liu WK (2005) Flexible piecewise appoximations based on partition of unity. Special issue entitled “Recent theoretical and practical developments in meshless methods”. Adv Comput Math 23(1–2): 191–199

    Article  MathSciNet  MATH  Google Scholar 

  36. Macri M, De S (2008) An octree partition of unity method (OctPUM) with enrichments for multiscale modeling of heterogeneous media. Comput Struct 86: 780–795

    Article  Google Scholar 

  37. Tian R, Yagawa G, Terasaks H (2006) Linear dependence problems of partition of unity-based generalized FEMs. Comput Methods Appl Mech Eng 195: 4768–4782

    Article  MATH  Google Scholar 

  38. Rajendran S, Liew KM (2003) A novel unsymmtric 8-node plane element immune to mesh distortion under a quadratic displacement field. Int J Numer Methods Eng 58: 1713–1748

    Article  MATH  Google Scholar 

  39. Reddy JN (2004) An introduction to nonlinear finite element analysis. Oxford University Press Inc., New York

    Book  MATH  Google Scholar 

  40. Kohnke PC (1997) ANSYS: theory of reference release 5.4. ANSYS, Inc., Canonsburg

    Google Scholar 

  41. Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21: 1129–1148

    Article  MathSciNet  MATH  Google Scholar 

  42. Cook RD (1974) Improved two-dimensional finite element. J Struct Div ASCE 100(ST6): 1851–1863

    Google Scholar 

  43. Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192: 2125–2168

    Article  MATH  Google Scholar 

  44. Wimp. J (1981) Sequence transformations and their applications. Academic Press, New York

    Google Scholar 

  45. Sze KY (2000) On immunizing five-beta hybrid-stress element models from trapezoidal locking in practical analyses. Int J Numer Methods Eng 47: 907–920

    Article  MATH  Google Scholar 

  46. Chen XM, Cen S, Long YQ, Yao ZH (2004) Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Comput Struct 82: 35–54

    Article  Google Scholar 

  47. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10: 1211–1219

    Article  MATH  Google Scholar 

  48. Nygard MK (1986) The free formulation for nonlinear finite elements with applications to shells. Ph.D. Dissertation, Norway

  49. Timoskenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  50. Bathe KJ (1996) Finite element procedure. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J.P., Rajendran, S. A ‘FE-Meshfree’ TRIA3 element based on partition of unity for linear and geometry nonlinear analyses. Comput Mech 51, 843–864 (2013). https://doi.org/10.1007/s00466-012-0762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0762-2

Keywords

Navigation