Skip to main content
Log in

A fast elasto-plastic formulation with hierarchical matrices and the boundary element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Boundary element methods offer some advantages for the simulation of tunnel excavation since the radiation condition is implicitly fulfilled and only the excavation and ground surfaces have to be discretized. Hence, large meshes and mesh truncation, as required in the finite element method, are avoided. Recently, capabilities for efficiently dealing with inelastic behavior and ground support have been developed, paving the way for the use of the method to simulate tunneling. However, for large scale three dimensional problems one drawback of the boundary element method becomes prominent: the computational effort increases quadratically with the problem size. To reduce the computational effort several fast methods have been proposed. Here a fast boundary element solution procedure for small strain elasto-plasticity based on a collocation scheme and hierarchical matrices is presented. The method allows the solution of problems with the computational effort and sparse storage increasing almost linearly with respect to the problem size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bebendorf M (2008) Hierarchical matrices: a means to efficiently solve elliptic boundary value problems. Springer, Berlin

    MATH  Google Scholar 

  2. Bebendorf M, Grzhibovskis R (2006) Accelerating galerkin bem for linear elasticity using adaptive cross approximation. Math Methods Appl Sci 29: 1721–1747

    Article  MathSciNet  MATH  Google Scholar 

  3. Bebendorf M, Rjasanow S (2003) Adaptive low-rank approximation of collocation matrices. Computing 70(1): 1–24

    Article  MathSciNet  MATH  Google Scholar 

  4. Beer G, Smith IM, Dünser C (2008) The boundary element method with programming. Springer, Wien

    MATH  Google Scholar 

  5. Beer G, Dünser C, Riederer K, Glauber P, Thöni K, Zechner J, Stettner M (2010) Computer simulation of conventional construction. In: Beer G (ed.) Technology innovation in underground construction. CRC Press/Balkema, Leiden, pp 129–161

    Google Scholar 

  6. Benedetti I, Aliabadi M, Davi G (2008) A fast 3d dual boundary element method based on hierarchical matrices. Int J Solids Struct 45: 2355–2376

    Article  MATH  Google Scholar 

  7. Beylkin G, Coifman R, Rokhlin V (1991) Fast wavelet transforms and numerical algorithms. Commun Pure Appl Math 44(2): 141–183

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnet M (2004) Boundary integral equation methods for elastic and plastic problems. In: Stein E, de Borst R, Hughes T (eds) Encyclopedia of computational mechanics. Wiley, Chichester, pp 719–749

    Google Scholar 

  9. Bonnet M, Mukherjee S (1996) Implicit bem formulations for usual and sensitivity problems in elasto-plasticity using consistent tangent operator concept. Int J Solids Struct 33(30): 4461–4480

    Article  MATH  Google Scholar 

  10. Börm S (2010) Efficient numerical methods for non-local operators. \({\mathcal{H}^2}\)-matrix compression, algorithms and analysis. European Mathematical Society, Zürich

    Book  Google Scholar 

  11. Börm S, Grasedyck L (1999) Hlib - a library for \({\mathcal{H}}\)- and \({\mathcal{H}^2}\)-matrices. http://www.hlib.org

  12. Börm S, Grasedyck L (2005) Hybrid cross approximation of integral operators. Numer Math 101: 221–249

    Article  MathSciNet  MATH  Google Scholar 

  13. Carrer J, Telles J (1992) A boundary element formulation to solve transient dynamic elastoplastic problems. Comput Struct 45(4): 707–713

    Article  MATH  Google Scholar 

  14. Ding J, Ye W, Gray LJ (2005) An accelerated surface discretization-based bem approach for non-homogeneous linear problems in 3-d complex domains. Int J Numer Meth Eng 63(12): 1775–1795

    Article  MATH  Google Scholar 

  15. Elleithy W, Grzhibovskis R (2009) An adaptive domain decomposition coupled finite element–boundary element method for solving problems in elasto-plasticity. Int J Numer Meth Eng 79(8): 1019

    Article  MathSciNet  MATH  Google Scholar 

  16. Frangi A, Maier G (1999) Dynamic elastic-plastic analysis by a symmetric galerkin boundary element method with time-independent kernels. Comput Meth Appl Mech Eng 171: 281–308

    Article  MATH  Google Scholar 

  17. Gao X (2002) A boundary element method without internal cells for two-dimensional and three-dimensional elastoplastic problems. J Appl Mech 69(2): 154–160

    Article  MATH  Google Scholar 

  18. Gao X, Davies T (2000) An effective boundary element algorithm for 2d and 3d elastoplastic problems. Int J Solids Struct 37: 4987–5008

    Article  MATH  Google Scholar 

  19. Gens A, Carol I, Gonzales N, Caballero A, Garolera D (2007) Library of model subroutines: soil and rock models. TunConstruct Deliv. doi:10.1061/(ASCE)GM.1943-5622.0000173

  20. Grasedyck L (2005) Adaptive recompression of \({\mathcal{H}}\)-matrices for bem. Comput 74: 205–223

    Article  MathSciNet  MATH  Google Scholar 

  21. Hackbusch W (1999) A sparse matrix arithmetic based on \({\mathcal{H}}\)-matrices. Comput 62: 89–108

    Article  MathSciNet  MATH  Google Scholar 

  22. Hackbusch W (2009) Hierarchische Matrizen. Springer, Berlin

    Book  MATH  Google Scholar 

  23. Hackbusch W, Börm S (2002) \({\mathcal{H}^2}\)-matrix approximation of integral operators by interpolation. Appl Numer Math 43(1-2): 129–143

    Article  MathSciNet  MATH  Google Scholar 

  24. Ingber M, Mammoli A, Brown M (2001) A comparison of domain integral evaluation techniques for boundary element methods. Int J Numer Meth Eng 52: 417–432

    Article  MATH  Google Scholar 

  25. Maerten F (2010) Adaptive cross-approximation applied to the solution of system of equations and post-processing for 3d elastostatic problems using the boundary element method. Eng Anal Bound Elem 34(5): 483–491

    Article  MATH  Google Scholar 

  26. Maier G, Polizzotto C (1987) A galerkin approach to boundary element elastoplastic analysis. Comput Meth Appl Mech Eng 60(2): 175–194

    Article  MATH  Google Scholar 

  27. Mantic V (1993) A new formula for the c-matrix in the somigliana identity. J Elast 33: 191–201

    Article  MathSciNet  MATH  Google Scholar 

  28. Margonari M, Bonnet M (2005) Fast multipole method applied to elastostatic bem–fem coupling. Comput Struct 83(10): 700–717

    Article  MathSciNet  Google Scholar 

  29. Nardini D, Brebbia C (1983) A new approach to free vibration analysis using boundary elements. Appl Math Model 7(3): 157–162

    Article  MATH  Google Scholar 

  30. Of G, Steinbach O, Urthaler P (2010) Fast evaluation of volume potentials in boundary element methods. J Sci Comput 32(2): 585–602

    MathSciNet  MATH  Google Scholar 

  31. Phillips J, White J (1997) A precorrected-fft method for electrostatic analysis of complicated 3-d structures. Comput Des Integr Circuits Syst 16(10): 1059–1072

    Article  Google Scholar 

  32. Rjasanow S, Steinbach O (2007) The fast solution of boundary integral equations. Mathematical and analytical techniques with applications to engineering. Springer, New York

    Google Scholar 

  33. Rokhlin V (1985) Rapid solution of integral equations of classical potential theory. J Comput Phys 60(2): 187–207

    Article  MathSciNet  MATH  Google Scholar 

  34. Rüberg T, Schanz M (2009) An alternative collocation boundary element method for static and dynamic problems. Comput Mech 44: 247–261

    Article  MathSciNet  MATH  Google Scholar 

  35. Simo J, Taylor R (1985) Consistent tangent operators for rate- independent elastoplasticity. Comput Meth Appl Mech Eng 48(1): 101–118

    Article  MathSciNet  MATH  Google Scholar 

  36. Steinbach O (1999) Fast evaluation of newton potentials in boundary element methods. E-W J Numer Math 7(3): 211–222

    MathSciNet  MATH  Google Scholar 

  37. Telles J, Brebbia C (1981) The boundary element method in plasticity. Appl Math Model 5: 275–281

    Article  MathSciNet  MATH  Google Scholar 

  38. Telles J, Carrer J (1991) Implicit procedures for the solution of elastoplastic problems by the boundary element method. Math Comput Model 15: 303–311

    Article  MATH  Google Scholar 

  39. Wang P, Yao Z (2007) Fast multipole boundary element analysis of two-dimensional elastoplastic problems. Commun Numer Meth Eng 23: 889–903

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao Z, Lan S (1999) Boundary stress calculation–a comparison study. Comput Struct 71(1): 77–85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Zechner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zechner, J., Beer, G. A fast elasto-plastic formulation with hierarchical matrices and the boundary element method. Comput Mech 51, 443–453 (2013). https://doi.org/10.1007/s00466-012-0756-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0756-0

Keywords

Navigation