Skip to main content
Log in

Simulation of cutting processes using mesh-free Lagrangian particle methods

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This contribution presents the model of a ‘granular solid’ based on the Discrete Element Method which is used to model cutting processes of cohesive and ductile materials, e.g. aluminum. The model is based on a conventional three-dimensional Discrete Element approach which employs rigid spheres as it is used to model granular media. Including cohesive interactions besides the repulsive interactions of the basic model allows for the particle agglomerate to display cohesive and ductile behavior. Using the thus generated granular solid the failure modes of ductile engineering materials like aluminum can be qualitatively and quantitatively reproduced. This is shown by comparison with experiments of a tensile and a Charpy impact test. To show the applicability of the approach for manufacturing problems an orthogonal cutting process of steel and aluminum is modelled and the cutting forces are compared to experiments. To further enhance the model thermal interactions between particles are included. The thermodynamics during cutting due to dissipative phenomena is evaluated and compared to experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cundall PA (2009) A computer model for simulating progressive, large-scale movements in blocky rock systems. In: Proceedings of the Symposium of the International Society of Rock Mechanics, vol 1:II-8

  2. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 1: 47–65

    Article  Google Scholar 

  3. Fleissner F (2010) Parallel object oriented simulation with Lagrangian particle methods. Doctoral thesis, Institute of Engineering and Computational Mechanics, University of Stuttgart, Shaker, Aachen

  4. Williams J, Perkins E, Cook B (2004) A contact algorithm for partitioning n arbitrary sized objects. Eng Comp 21: 235–248

    Article  MATH  Google Scholar 

  5. Jing L, Stephansson O (2007) Fundamentals of discrete element methods for rock engineering: theory and applications, vol 85 of developments in geotechnical engineering. Elsevier, Amsterdam

    Google Scholar 

  6. Luding S (1998) Die Physik kohäsionsloser granularer Medien (in German). Logos, Berlin

    Google Scholar 

  7. Cundall P, Hart R (1992) Numerical modelling of discontinua. Eng Comp 9: 101–113

    Article  Google Scholar 

  8. Lankarani HM, Nikravesh PE (1990) A contact force model with hysteresis damping for impact analysis of multibody systems. J Mech Des 112: 369–376

    Article  Google Scholar 

  9. Kuwabara G, Kono K (1987) Restitution coefficient in a collision between two spheres. Jpn J Appl Phys 26: 1230–1233

    Article  Google Scholar 

  10. Schäer J, Dippel S, Wolf DE (1996) Force schemes in simulations of granular materials. J Phys I France 6: 5–20

    Article  Google Scholar 

  11. Fleissner F, Gaugele T, Eberhard P (2007) Applications of the discrete element method in mechanical engineering. Multibody Syst Dyn 18: 81–94

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Addetta GA, Ramm E (2006) A microstructure-based simulation environment on the basis of an interface enhanced particle model. Granul Matter 8: 159–174

    Article  MATH  Google Scholar 

  13. Liu K, Gao L, Tanimura S (2004) Application of discrete element method in impact problems. JSME Int J Ser A 47: 138–145

    Article  Google Scholar 

  14. Bagi K (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul Matter 7: 31–43

    Article  MATH  Google Scholar 

  15. Jerier JF, Imbault D, Donze FV, Doremus P (2009) A geometric algorithm based on tetrahedral meshes to generate a dense polydisperse sphere packing. Granul Matter 11: 43–52

    Article  Google Scholar 

  16. Cui L, O’Sullivan C (2003) Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granul Matter 5: 135–145

    Article  MATH  Google Scholar 

  17. Gaugele T, Fleissner F, Eberhard P (2008) Simulation of material tests using meshfree Lagrangian particle methods. Proc Inst Mech Eng Part K J Multi-body Dyn 222: 327–338

    Google Scholar 

  18. Ergenzinger C, Seifried R, Eberhard P (2010) A discrete element model to describe failure of strong rock in uniaxial compression. Granul Matter. doi:10.1007/s10035-010-0230-7

  19. Gaugele T (2011) Application of the discrete element method to model ductile, heat conductive materials. Doctoral thesis, Institute of Engineering and Computational Mechanics, University of Stuttgart, Shaker, Aachen

  20. NN (2001) Metallische Werkstoffe Zugversuch—Prüfverfahren bei Raumtemperatur (in German). DIN Deutsches Institut für Normung e.V., Berlin

  21. NN (1991) Kerbschlagbiegeversuch nach Charpy (in German). DIN Deutsches Institut für Normung e.V., Berlin

  22. Holman J (1997) Heat transfer. McGraw-Hill, New York

    Google Scholar 

  23. Munz CD, Westermann T (2006) Numerische Behandlung gewönlicher und partieller Differentialgleichungen (in German). Springer, Berlin

    Google Scholar 

  24. Bronstein IN, Semendjajew KA, Musiol G, Mühlig H (2001) Taschenbuch der Mathematik (in German). Verlag Harri Deutsch, Frankfurt am Main

    Google Scholar 

  25. Polifke W, Kopitz J (2005) Wärmeübertragung—Grundlagen, analytische und numerische Methoden (in German). Pearson, München

    Google Scholar 

  26. Jaspers SP (1999) Metal cutting mechanics and material behaviour. Dissertation, Universiteit Eindhoven

  27. Farren W, Taylor G (1925) The heat developed during plastic extension of metals. Proc R Soc Ser A 107: 422–451

    Article  Google Scholar 

  28. Taylor G, Quinney M (1934) The latent heat remaining in a metal after cold work. Proc R Soc Ser A 143: 307–326

    Article  Google Scholar 

  29. Hodowany J, Ravichandran G, Rosakis A, Rosakis P (2000) Partition of plastic work into heat and stored energy in metals. Exp Mech 40: 113–123

    Article  Google Scholar 

  30. Hodowany J (1997) On the conversion of plastic work into heat. Dissertation, California Institute of Technology

  31. Zehnder A, Potdar Y, Bhalla K (2002) Plasticity induced heating in the fracture and cutting of metals. In: Aliabadi MH (ed) Thermo mechanical fatigue and fracture. WIT Press, Southampton, pp 209–244

    Google Scholar 

  32. Jaspers S, Dautzenberg J (2002) Material behaviour in metal cutting: strains, strain rates, and temperatures in metal cutting. J Mater Process Technol 121: 123–135

    Article  Google Scholar 

  33. Vormann K, Frank P, Witt S, Schermann T (2007) Abschlussbericht des Verbundforschungsprojekts Sindbap—simulation industrieller Bearbeitungsprozesse (in German). Tech. rep., Forschungszentrum Karlsruhe

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Eberhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberhard, P., Gaugele, T. Simulation of cutting processes using mesh-free Lagrangian particle methods. Comput Mech 51, 261–278 (2013). https://doi.org/10.1007/s00466-012-0720-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0720-z

Keywords

Navigation