Computational Mechanics

, Volume 51, Issue 2, pp 129–150 | Cite as

A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems

Original Paper

Abstract

A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid–structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.

Keywords

Fluid–structure interaction Finite element method Immersed boundary Immersed smoothed finite element method Characteristic-based split Incompressible viscous fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donea J, Guiliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite-element method for transient dynamic fluid structure interactions. Comput Methods Appl Mech Eng 33: 689–723. doi:10.1016/0045-7825(82)90128-1 MATHCrossRefGoogle Scholar
  2. 2.
    Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J Comput Phys 169: 427–462. doi:10.1006/jcph.2000.6592 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Liu WK, Chang H, Chen JS, Belytschko T (1988) Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite-elements for nonlinear continua. Comput Methods Appl Mech Eng 68: 259–310. doi:10.1016/0045-7825(88)90011-4 MATHCrossRefGoogle Scholar
  4. 4.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322. doi:10.1007/s00466-006-0084-3 MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively-parallel finite-element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi:10.1016/0045-7825(94)00082-4 MATHCrossRefGoogle Scholar
  6. 6.
    Mittal S, Tezduyar TE (1995) Parallel finite-element simulation of 3D incompressible flows–fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953. doi:10.1002/fld.1650211011 MATHCrossRefGoogle Scholar
  7. 7.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi:10.1016/S0045-7825(00)00204-8 MATHCrossRefGoogle Scholar
  8. 8.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi:10.1016/j.cma.2004.09.014 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Tezduyar TE, Sathe S (2007) Modelling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi:10.1002/fld.1430 MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi:10.1007/s00466-008-0261-7 MATHCrossRefGoogle Scholar
  11. 11.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267. doi:10.1007/s00466-011-0571-z MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37. doi:10.1007/s00466-008-0315-x MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10: 252–271. doi:10.1016/0021-9991(72)90065-4 MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25: 220–252. doi:10.1016/0021-9991(77)90100-0 MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Mohd-Yusof J (1997) Combined immersed-boundary/b-Spline methods for simulations of flow in complex geometries CTR Annual Research Briefs, NASA Ames Research Center/Stanford University Center for Turbulence Research, Stanford, CAGoogle Scholar
  16. 16.
    Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161: 35–60. doi:10.1006/jcph.2000.6484 MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207: 457–492. doi:10.1016/j.jcp.2005.01.020 MATHCrossRefGoogle Scholar
  18. 18.
    Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209: 448–476. doi:10.1016/j.jcp.2005.03.017 MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193: 2051–2067. doi:10.1016/j.cma.2003.12.044 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Liu WK, Liu Y, Farrell D, Zhang L, Wang XS, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J, Hong J, Chen X, Hsu H (2006) Immersed finite element method and its applications to biological systems. Comput Methods Appl Mech Eng 195: 1722–1749. doi:10.1016/j.cma.2005.05.049 MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Zhang LT, Gay M (2007) Immersed finite element method for fluid–structure interactions. J Fluids Struct 23: 839–857. doi:10.1016/j.jfluidstructs.2007.01.001 CrossRefGoogle Scholar
  22. 22.
    Lee TR, Chang YS, Choi JB, Kim DW, Liu WK, Kim YJ (2008) Immersed finite element method for rigid body motions in the incompressible Navier-Stokes flow. Comput Methods Appl Mech Eng 197: 2305–2316. doi:10.1016/j.cma.2007.12.013 MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Wang XS, Zhang LT (2010) Interpolation functions in the immersed boundary and finite element methods. Comput Mech 45: 321–334. doi:10.1007/s00466-009-0449-5 MATHCrossRefGoogle Scholar
  24. 24.
    Zhang ZQ, Liu GR (2011) An immersed smoothed finite element method for fluid–structure interaction problems. Int J Comput Methods 8: 747–757. doi:10.1142/S0219876211002794 MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Zhang ZQ, Liu GR, Khoo BC (2011) Immersed smoothed finite element method for two dimensional fluid–structure interaction problems. Int J Numer Methods Eng. doi:10.1002/nme.4299
  26. 26.
    Chen J-S, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50: 435–466. doi:10.1002/nme.338 MATHCrossRefGoogle Scholar
  27. 27.
    Liu GR (2010) A G space theory and a weakened weak (W-2) form for a unified formulation of compatible and incompatible methods: part I theory. Int J Numer Methods Eng 81: 1093–1126. doi:10.1002/nme.2719 MATHGoogle Scholar
  28. 28.
    Liu GR (2010) A G space theory and a weakened weak (W-2) form for a unified formulation of compatible and incompatible methods: part II applications to solid mechanics problems. Int J Numer Methods Eng 81: 1127–1156. doi:10.1002/nme.2720 MATHGoogle Scholar
  29. 29.
    Liu GR (2009) Mesh free methods: moving beyond the finite element methods, 2 edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  30. 30.
    Liu GR (2009) On G space theory. Int J Comput Methods 6: 257–289. doi:10.1142/S0219876209001863 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Liu GR, Zhang GY (2009) A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation method. Int J Comput Methods 6: 147–179. doi:10.1142/S0219876209001796 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liu GR (2008) A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int J Comput Methods 5: 199–236. doi:10.1142/S0219876208001510 MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Liu GR, Zhang GY (2008) Edge-based smoothed point interpolation methods. Int J Comput Methods 5: 621–646. doi:10.1142/S0219876208001662 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320: 1100–1130. doi:10.1016/j.jsv.2008.08.027 CrossRefGoogle Scholar
  35. 35.
    Liu GR, Nguyen-Thoi T (2010) Smoothed finite element method. CRC Press, Boca RatonCrossRefGoogle Scholar
  36. 36.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite-element formulation for computational fluid-dynamics. 5. circumventing the Babuska-Brezzi condition—a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99. doi:10.1016/0045-7825(86)90025-3 MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible-flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi:10.1016/0045-7825(92)90141-6 MATHCrossRefGoogle Scholar
  38. 38.
    Brooks AN, Hughes TJR (1982) Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32: 199–259. doi:10.1016/0045-7825(82)90071-8 MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite-element computations involving moving boundaries and interfaces-the deforming-spatial-domain space–time procedure. 1. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi:10.1016/0045-7825(92)90059-S MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Donea J (1984) A Taylor-Galerkin method for convective-transport problems. Int J Numer Methods Eng 20: 101–119. doi:10.1002/nme.1620200108 MATHCrossRefGoogle Scholar
  41. 41.
    Zienkiewicz OC, Taylor RL (2000) The finite element method, 5 edn. Butterworth-Heinemann, OxfordGoogle Scholar
  42. 42.
    Zienkiewicz OC, Nithiarasu P, Codina R, Vázquez M, Ortiz P (1999) The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems. Int J Numer Methods Fluids 31: 359–392. doi:10.1002/(sici)1097-0363(19990915) MATHCrossRefGoogle Scholar
  43. 43.
    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, ChichesterMATHGoogle Scholar
  44. 44.
    Massarotti N, Arpino F, Lewis RW, Nithiarasu P (2006) Explicit and semi-implicit CBS procedures for incompressible viscous flows. Int J Numer Methods Eng 66: 1618–1640. doi:10.1002/nme.1700 MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160: 705–719. doi:10.1006/jcph.2000.6483 MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Boffi D, Gastaldi L, Heltai L (2007) On the CFL condition for the finite element immersed boundary method. Comput Struct 85: 775–783. doi:10.1016/j.compstruc.2007.01.009 MathSciNetCrossRefGoogle Scholar
  47. 47.
    Zhao H, Freund JB, Moser RD (2008) A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J Comput Phys 227: 3114–3140. doi:10.1016/j.jcp.2007.11.019 MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Mordant N, Pinton JF (2000) Velocity measurement of a settling sphere. Eur Phys J B 18: 343–352. doi:10.1007/PL00011074 CrossRefGoogle Scholar
  49. 49.
    Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134: 351–373. doi:10.1016/0045-7825(95)00988-4 MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Johnson AA, Tezduyar TE (1997) 3D simulation of fluid–particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145: 301–321. doi:10.1016/s0045-7825(96)01223-6 MATHCrossRefGoogle Scholar
  51. 51.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi:10.1007/s004660050393 MATHCrossRefGoogle Scholar
  52. 52.
    Johnson A, Tezduyar T (2001) Methods for 3D computation of fluid–object interactions in spatially periodic flows. Comput Methods Appl Mech Eng 190: 3201–3221. doi:10.1016/s0045-7825(00)00389-3 MATHCrossRefGoogle Scholar
  53. 53.
    Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow In: Bungartz H-J, Schäfer M (eds) Fluid–structure interaction (Lecture Notes in Computational Science and Engineering) Springer, Berlin, Heidelberg, pp. 371–385Google Scholar
  54. 54.
    Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43: 91–101. doi:10.1007/s00466-008-0270-6 MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Singapore-MIT Alliance (SMA)National University of SingaporeSingaporeSingapore
  2. 2.School of Aerospace SystemsUniversity of CincinnatiCincinnatiUSA
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations