Skip to main content
Log in

Artificial boundary conditions for atomic simulations of face-centered-cubic lattice

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We design a class of matching boundary conditions for atomic simulations of the face-centered-cubic lattice. Such a condition takes the form of a linear constraint for atoms near the boundary. A normal matching boundary condition is obtained by matching the dispersion relation in the long wave limit. A two-angle matching boundary condition is constructed through operator multiplication with the help of apparent wave propagation. The edge atoms and the corner atoms are treated in a consistent manner. Reflection coefficient analysis and wave-packet tests verify the effectiveness of the proposed boundary conditions for general incidence, not limited to long waves. The treatment is local in both space and time, yielding negligible additional numerical cost. Vector wave formulation is also presented, and applied to nanoindentation simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armfield SW (1991) Finite difference solutions of the Navier–Stokes equations on staggered and non-staggered grids. Comput Fluids 20: 1–17

    Article  MATH  Google Scholar 

  2. Berenger JP (1994) A perfectly matched layer for the absorption of the electromagnetic waves. J Comput Phys 114: 185–200

    Article  MathSciNet  MATH  Google Scholar 

  3. Born M, Huang K (1954) Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford

    MATH  Google Scholar 

  4. Clayton R, Engquist B (1977) Absorbing boundary condtions for acoustic and elastic wave equations. Bull Seism Soc Am 67: 1529–1540

    Google Scholar 

  5. E W, Huang Z (2001) Matching conditions in atomistic-continuum modeling of materials. Phys Rev Lett 87: 135501

    Article  Google Scholar 

  6. Engquist B, Majda A (1979) Radiation boundary conditions for acoustic and elastic calculations. Comm Pure Appl Math 32: 313–357

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang M, Tang S (2009) Efficient and robust design for absorbing boundary conditions in atomistic computations. Chin Phys Lett 26: 116201

    Article  Google Scholar 

  8. Germann TC, Tanguy D, Holian BL, Lomdahl PS, Mareschal M, Ravelo R (2004) Dislocation structure hehind a shock front in fcc perfect crystals: atomistic simulation results. Metal Mater Trans A 35: 2609–2615

    Article  Google Scholar 

  9. Guddati MN, Thirunavukkarasu S (2009) Phonon absorbing boundary conditions for molecular dynamics. J Comput Phys 228: 8112–8134

    Article  MathSciNet  MATH  Google Scholar 

  10. Higdon RL (1987) Absorbing boundary conditions for the wave equation. Math Comp 49: 65–90

    Article  MathSciNet  MATH  Google Scholar 

  11. Johnson KL (1987) Contact Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  12. Karpov EG, Wagner GJ, Liu WK (2005) A Green’s function approach to deriving non-reflecting boundary conditions in molecular dynamics simulations. Int J Numer Mech Eng 62: 1250–1262

    Article  MATH  Google Scholar 

  13. Karpov EG, Park HS, Liu WK (2007) A phonon heat bath approach for the atomistic and multiscale simulation of solids. Int J Numer Meth Eng 70: 351–378

    Article  MathSciNet  MATH  Google Scholar 

  14. Karpov EG, Yu H, Park HS, Liu WK, Wang QJ, Qian D (2006) Multiscale boundary conditions in crystalline solids: theory and application to nanoindentation. Int J Solids Struct 43: 6359–6379

    Article  MATH  Google Scholar 

  15. Kimizuka H, Kaburaki H, Shimizu F, Li J (2002) Crack-tip dislocation nanostructures in dynamical fracture of fcc metals: a molecular dynamics study. J Comput-Aided Mater 8: 127–149

    Google Scholar 

  16. Li X, E W (2005) Multiscale modeling of the dynamics of solids at finite temperature. J Mech Phys Solids 53: 1650–1685

    Google Scholar 

  17. Li X, E W (2007) Variational boundary conditions for molecular dynamics simulations of crystalline solids at finite temperature: treatment of the thermal bath. Phys Rev B 76: 104107

    Google Scholar 

  18. Lilleodden ET, Zimmerman JA, Foiles SM, Nix WD (2003) Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J Mech Phys Solids 51: 901–920

    Article  MATH  Google Scholar 

  19. Lindman EL (1975) “Free-space” boundary conditions for the time dependent wave equation. J Comput Phys 18: 66–78

    Article  MATH  Google Scholar 

  20. Liu WK, Karpov EG, Park HS (2006) Nano mechanics and Materials: Theory, Multiscale Methods and Applications. Wiley, New York

    Book  Google Scholar 

  21. Medyanik SN, Karpov EG, Liu WK (2006) Domain reduction method for atomistic simulations. J Comput Phys 218: 836–859

    Article  MathSciNet  MATH  Google Scholar 

  22. Pang G, Tang S (2011) Time history kernel functions for square lattice. Comput Mech 48: 699–711

    Article  MathSciNet  MATH  Google Scholar 

  23. Park HS, Karpov EG, Klein PA, Liu WK (2005) Three-dimensional bridging scale analysis of dynamic fracture. J Comput Phys 207: 588–609

    Article  MATH  Google Scholar 

  24. Park HS, Karpov EG, Liu WK (2005) Non-reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations. Int J Numer Mech Eng 64: 237–259

    Article  MathSciNet  MATH  Google Scholar 

  25. Qian D, Phadke M, Karpov E, Liu WK (2011) A domain-reduction approach to bridging-scale simulation of one-dimensional nanostructures. Comput Mech 47: 31–47

    Article  MathSciNet  MATH  Google Scholar 

  26. Rao S, Hernandez C, Simmons JP, Parthasarathy TA, Woodward C (1998) Green’s function boundary conditions in two-dimensional and three-dimensional atomistic simulations of dislocations. Philos Mag A 77: 231–256

    Article  Google Scholar 

  27. Tang S (2008) A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids. J Comput Phys 227: 4038–4062

    Article  MATH  Google Scholar 

  28. Tang S, Liu WK, Karpov EG, Hou TY (2007) Bridging atomistic/continuum scales in solids with moving dislocations. Chin Phys Lett 24(1): 161–164

    Article  Google Scholar 

  29. To AC, Li S (2005) Perfectly matched multiscale simulations. Phys Rev B 72: 035414

    Article  Google Scholar 

  30. Wang X, Tang S (2010) Matching boundary conditions for diatomic chains. Comput Mech 46: 813–826

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang X, Tang S (2010) Matching boundary conditions for multiscale computations of crystalline solids. I. One dimensional chains, prepint

  32. Wang X, Tang S (2010) Matching boundary conditions for multiscale computations of crystalline solids. II. Multiple dimensional lattices, preprint

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiang Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, M., Tang, S., Li, Z. et al. Artificial boundary conditions for atomic simulations of face-centered-cubic lattice. Comput Mech 50, 645–655 (2012). https://doi.org/10.1007/s00466-012-0696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0696-8

Keywords

Navigation