Skip to main content
Log in

The fast multipole boundary element methods (FMBEM) and its applications in rolling engineering analysis

  • Review Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Fast multipole boundary element methods (FMBEMs) are developed based on the couple of fast multipole algorithm and generalized minimal residual algorithm. The FMBEMs improve the efficiency of conventional BEMs, accelerate the computing, enlarge the solving scale, and it is applied in various engineering fields. The paper tried to do a brief review for the FMBEMs, and focus on the description of basic principles and applications in rolling engineering. The basic principles and main frameworks of two typical methods of FMBEMs (sphere harmonic function multipole BEM and Taylor series multipole BEM) are briefly described, and then the key numerical iterative and preconditioning techniques suitable for the FMBEMs are introduced. The typical numerical examples are presented, including the elasticity problems, the elastic contact problems and the elastoplasticity problems, etc. The validity and effectiveness of FMBEMs are effectively illustrated by engineering analysis examples. The numerical results suggest that the FMBEMs are suitable for the analysis and solution of large scale rolling engineering problems. The implementation process of numerical analysis can provide useful reference for the applications in other engineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. André B, Wolfgang H, Friedemann G et al (2005) Fast multipole method based solution of electrostatic and magnetostatic field problems. Comput Visual Sci 8(3–4): 137–144

    Google Scholar 

  2. Bebendorf M, Grzhibovskis R (2006) Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math Methods Appl Sci 29(14): 1721–1747

    Article  MathSciNet  MATH  Google Scholar 

  3. Chandra A (1989) Simulation of rolling processes by the boundary element method. Comput Mech 4(6): 443–451

    Article  MATH  Google Scholar 

  4. Chen XM (2006) Theoretical and experimental study of pressure screw pairs micro-size behavior. PhD dissertation, Yanshan University

  5. Chen ZJ (2009) The theory and application research of Taylor series multipole BEM for 3-D elastic contact problems with friction. PhD dissertation, Yanshan University

  6. Chen ZJ, Xiao H (2009) The vectorization expressions of Taylor series multipole-BEM for 3D elasticity problems. Comput Mech 43(2): 297–306

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen XM, Shen GX, Liu DY (2004) Frictional contact multipole-BEM and 3-D analysis of screwpairs. Chin J Mech Eng 17(3): 411–414

    Article  Google Scholar 

  8. Chen ZJ, Xiao H, Yang X. (2010) Error analysis and novel near-field preconditioning techniques for Taylor series multipole-BEM. Eng Anal Bound Elem 34(2): 173–181

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen ZJ, Xiao H, Yang X, Su CJ (2010) Taylor series multipole boundary element-mathematical programming method for 3D multi-bodies elastic contact problems. Int J Numer Methods Eng 83(2): 135–173

    MathSciNet  MATH  Google Scholar 

  10. Chen ZJ, Xiao H, Yang X (2011) Analysis of contact and roll system deformation of HC mill by Taylor series multipole BEM mathematical programming method. Chin J Comput Mech 28(1): 84–90

    Google Scholar 

  11. Cheng H, Greengard L, Rokhlin V (1999) A fast adaptive multipole algorithm in three dimensions. J Comput Phys 155(2): 468–498

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao XW, Davies TG (2000) Boundary element programming in mechanics. Cambridge University Press, New York

    Google Scholar 

  13. Greengard LF, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2): 325–348

    Article  MathSciNet  MATH  Google Scholar 

  14. Gui HL, Huang QX (2010) Parallel fast multipole BEM of strip cold rolling process. Key Eng Mater 439–440:86–91

    Google Scholar 

  15. Gui HL, Huang QX (2010) The application of fast multipole-bem for 3-D elastic contact problem with friction. Lecture notes in electrical engineering: advances in wireless networks and information systems, vol. 72. pp 93–100

  16. Gui HL, Huang QX (2010) The mixed fast multipole boundary element method for solving strip cold rolling process. Appl Mech Mater 20–23:76–81

    Google Scholar 

  17. Gui HL, Huang QX, Ma LF, Tian YQ (2010) Application of FM-BEM in rolled piece deformation analysis of straightening process. J Chongqing Univ 33(5): 95–99

    Google Scholar 

  18. Huang QX, Gui HL et al (2010) Analysis of the mill roller bearing using mixed fast multipole boundary element method. Adv Mater Res 145: 159–164

    Article  Google Scholar 

  19. Jeonghwa L, Zhang Jun, Cai-Cheng Lu (2004) Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electro-magnetics. IEEE T Antenn Propag 52(9): 2277–2287

    Article  Google Scholar 

  20. Kurz S, Rain O, Rjasanow S (2002) The adaptive cross-approximation technique for the 3D boundary-element method. IEEE Trans Magn 38(2): 421–424

    Article  Google Scholar 

  21. Li HJ, Shen GX, Liu DY (2007) Fretting damage mechanism occurred sleeve of oil-film bearing in rolling mill and multipole Boundary element method. Chin J Mech Eng 43(1): 95–99,104

    Article  MathSciNet  Google Scholar 

  22. Li YG, Huang QX, Shen GX, Xiao H et al (2008) Simulation of strip rolling using elastoplastic contact BEM with friction. J Ron Steel Res Int 15(1): 34–38

    Article  Google Scholar 

  23. Liu DY (2004) Three dimensional multipole BEM for elasto-plastic contact with frictional and rolling simulation of four-high mill. PhD dissertation, Yanshan University

  24. Liu YJ (2006) A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems. Int J Numer Methods Eng 65(6): 863–881

    Article  MATH  Google Scholar 

  25. Liu YJ (2009) Fast multipole boundary element method: theory and applications in engineering. Cambridge University Press, New York

    Book  Google Scholar 

  26. Liu DY, Shen GX (2005) Multipole BEM for 3-D elasto-plastic contact with friction. Tsinghua Sci Technol 10(1): 57–60

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu YJ, Nishimura N (2006) The fast multipole boundary element method for potential problems: A tutorial. Eng Anal Bound Elem 30(5): 371–381

    Article  MATH  Google Scholar 

  28. Liu YJ, Nishimur N, Otani Y (2005) Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comput Mater Sci 34(2): 173–187

    Article  Google Scholar 

  29. Massimiliano M, Marc B (2005) Fast multipole method applied to elastostatic BEM-FEM coupling. Comput Struct 83(10–11): 700–717

    Google Scholar 

  30. Nishimura N (2002) Fast multipole accelerated boundary integral equation methods. Appl Mech Rev 55(4): 299–324

    Article  Google Scholar 

  31. Peirce AP, Napier JAL (1995) A spectral multipole method for efficient solution of large scale boundary element models in elastostaics. Int J Numer Meth Eng 38(23): 4009–4034

    Article  MathSciNet  MATH  Google Scholar 

  32. Phillips JR, White JK (1997) A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans Comput Aided Des Integr Circuit Syst 16(10): 1059–1072

    Article  Google Scholar 

  33. Popov V, Power H (2001) An O(N) Taylor series multipole boundary element method for three-dimensional elasticity problems. Eng Anal Bound Elem 25(1): 7–18

    Article  MATH  Google Scholar 

  34. Of G, Steinbach O, Wendland WL (2005) Applications of a fast multipole Galerkin in boundary element method in linear elastostatics. Comput Visual Sci 8(3-4): 201–209

    Article  MathSciNet  Google Scholar 

  35. Rokhlin V (1985) Rapid solution of integral equations of classical potential theory. J Comput Phys 60(2): 187–207

    Article  MathSciNet  MATH  Google Scholar 

  36. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3): 856–869

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen GX, Yu CX, Liu DY (2009) Fast multipole boundary element method in rolling engineering and its research progress. In: Computational methods in engineering, 3rd Asia-Pacific international conference on computational methods in engineering, Oct 18–20, Nanjing, China

  38. Shu XD, Li CM, Liu DY, Shen GX (2008) The pressure analysis of rolling strip with multi-pole BEM. J Plast Eng 15(1): 123–126

    Google Scholar 

  39. Shu XD, Li CM, Liu DY, Shen GX (2008) Multipole BEM and its application in rolling engineering. J Iron Steel Res Int 20(1): 25–28

    Google Scholar 

  40. Wang HT, Yao ZH (2005) A new fast multipole boundary element method for large scale analysis of mechanical properties in 3D particle-reinforced composites. Comput Model Eng Sci 7(1): 85–95

    MathSciNet  MATH  Google Scholar 

  41. Wang HT, Yao ZH, Wang PB (2005) On the preconditioners for fast multipole boundary element methods for 2D multi-domain elastostatics. Eng Anal Bound Elem 29(7): 673–688

    Article  MATH  Google Scholar 

  42. Xiao H, Chen ZJ (2007) Numerical experiments of preconditioned Krylov subspace methods solving the dense nonsymmetric systems arising from BEM. Eng Anal Bound Elem 31(12): 1013–1023

    Article  Google Scholar 

  43. Xiong SW, Rodrigues JMC, Martins PAF (1999) Simulation of plane strain rolling through a combined finite element-boundary element approach. J Mater Process Technol 96(1-3): 173–181

    Article  Google Scholar 

  44. Xiong SW, Rodrigues JMC, Martins PAF (1999) Three-dimensional simulation of flat rolling through a combined finite element-boundary element approach. Finite Elem Anal Des 32(4): 221–233

    Article  MATH  Google Scholar 

  45. Xiong SW, Rodrigues JMC, Martins PAF (2005) Simulation of plane strain rolling through a combined element free Galerkin–boundary element approach. J Mater Process Technol 159(2): 214–223

    Article  Google Scholar 

  46. Yao ZH, Wang PB (2007) Fast multipole boundary element analysis of two-dimensional elastoplastic problems. Commun Numer Methods Eng 23(10): 889–903

    MathSciNet  MATH  Google Scholar 

  47. Yao ZH, Wang PB, Lei T (2007) Large-scale boundary element analysis in solid mechanics using fast multipole method. Comput Methods Eng Sci 1: 19–34

    Google Scholar 

  48. Yu CX, Shen GX (2006) Study on the surface fast multipole boundary element method based on spherical harmonic space: mathematical theory part. Int J Innov Comput Inf Control 2(3): 581–591

    Google Scholar 

  49. Yu CX, Shen GX (2008) Program-iteration pattern algorithm for the elasto-plastic frictional contact FM-BEM. J Univ Sci Technol Chin 38(1): 70–76

    MathSciNet  Google Scholar 

  50. Yu CX, Shen GX (2008) Program-iteration pattern fast multipole BEM for elasto-plastic contact with friction. Chin J Comput Mech 25(1): 65–71

    MATH  Google Scholar 

  51. Yu CX, Shen GX, Liu DY (2005) Mathematical programming solution for the frictional contact multipole BEM. Tsinghua Sci Technol 10(1): 51–56

    Article  MathSciNet  MATH  Google Scholar 

  52. Yu CX, Shen GX, Liu DY (2005) Program-pattern multipole boundary element method for frictional contact. Acta Mech Solida Sin 18(1): 76–82

    MathSciNet  Google Scholar 

  53. Yuhong F, Kenneth J, Klimkowski I et al (1998) A fast solution method for three-dimensional many particle problems of linear elasticity. Int J Numer Meth Eng 42(8): 1215–1229

    MATH  Google Scholar 

  54. Zhao LB, Yao ZH (2005) Fast multipole BEM for 3-D elastostatic problems with applications for thin structures. Tsinghua Sci Technol 10(1): 67–75

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zejun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Xiao, H. The fast multipole boundary element methods (FMBEM) and its applications in rolling engineering analysis. Comput Mech 50, 513–531 (2012). https://doi.org/10.1007/s00466-012-0692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0692-z

Keywords

Navigation