Computational Mechanics

, Volume 50, Issue 5, pp 579–590 | Cite as

Discretized peridynamics for linear elastic solids

  • Wenyang Liu
  • Jung Wuk HongEmail author
Original Paper


Peridynamics is a theory of continuum mechanics employing a nonlocal model that can simulate fractures and discontinuities (Askari et al. J Phys 125:012–078, 2008; Silling J Mech Phys Solids 48(1):175–209, 2000). It reformulates continuum mechanics in forms of integral equations rather than partial differential equations to calculate the force on a material point. A connection between bond forces and the stress in the classical (local) theory is established for the calculation of peridynamic stress, which is calculated by summing up bond forces passing through or ending at the cross section of a node. The peridynamic stress and the constitutive law in elasticity are used for the derivation of one- and three-dimensional numerical micromoduli. For three-dimensional discretized peridynamics, the numerical micromodulus is larger than the analytical micromodulus, and converges to the analytical value as the horizon to grid spacing ratio increases. A comparison of material responses in a three-dimensional discretized peridynamic model using numerical and analytical micromoduli, respectively, is performed for different horizons. As the horizon increases, the boundary effect is more conspicuous, and the errors increase in the back-calculated Young’s modulus and strains. For the simulation of materials of Poisson’s ratios other than 1/4, a pairwise compensation scheme for discretized peridynamics is proposed. Compared with classical (local) elasticity solutions, the computational results by applying the proposed scheme show good agreement in the strain, the resultant Young’s modulus and Poisson’s ratio.


Peridynamics Continuum mechanics Nonlocal theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Askari E, Bobaru F, Lehoucq RB, Parks ML, Silling SA, Weckner O (2008) Peridynamics for multiscale materials modeling. J Phys 125:012–078. IOP Publishing, TokyoGoogle Scholar
  2. 2.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bobaru F (2007) Influence of Van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Model Simul Mater Sci Eng 15: 397CrossRefGoogle Scholar
  4. 4.
    Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77(6): 852–877zbMATHCrossRefGoogle Scholar
  5. 5.
    Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54(9): 1811–1842. doi: 10.1016/j.jmps.2006.04.001 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    De S, Hong JW, Bathe KJ (2003) On the method of finite spheres in applications: towards the use with ADINA and in a surgical simulator. Comput Mech 31(1): 27–37MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Demmie PN, Silling SA (2007) An approach to modeling extreme loading of structures using peridynamics. J Mech Mater Struct 2: 1921–1945CrossRefGoogle Scholar
  8. 8.
    Edelen DGB, Green AE, Laws N (1971) Nonlocal continuum mechanics. Arch Ration Mech Anal 43(1): 36–44MathSciNetzbMATHGoogle Scholar
  9. 9.
    Emmrich E, Weckner O (2006) The peridynamic equation of motion in non-local elasticity theory. In: III European conference on computational mechanics. Solids, structures and coupled problems in engineering, vol 19. Springer, LisbonGoogle Scholar
  10. 10.
    Emmrich E, Weckner O (2007) On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun Math Sci 5(4): 851–864MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ercolessi F (1997) A molecular dynamics primer. Spring College in Computational Physics, ICTP, Trieste, pp 24–25Google Scholar
  12. 12.
    Foster JT, Silling SA, Chen WW (2009) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10): 1242–1258Google Scholar
  13. 13.
    Foulk JW, Allen DH, Helms KLE (2000) Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput Methods Appl Mech Eng 183(1–2): 51–66zbMATHCrossRefGoogle Scholar
  14. 14.
    Gerstle W, Sau N, Silling SA (2005) Peridynamic modeling of plain and reinforced concrete structures. In: SMiRT18: 18th Int. conf. struct. mech. react. technol., BeijingGoogle Scholar
  15. 15.
    Gerstle W, Sau N, Silling SA (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237(12–13): 1250–1258CrossRefGoogle Scholar
  16. 16.
    Gils MAJV, van der Sluis O, Zhang GQ, Janssen JHJ, Voncken RMJ (2007) Analysis of Cu/low-k bond pad delamination by using a novel failure index. Microelectron Reliab 47(2–3): 179–186Google Scholar
  17. 17.
    Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2): 229–244zbMATHCrossRefGoogle Scholar
  18. 18.
    Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6): 1156–1168. doi: 10.1016/j.engfracmech.2010.11.020 CrossRefGoogle Scholar
  19. 19.
    Holian BL, Ravelo R (1995) Fracture simulations using large-scale molecular dynamics. Phys Rev B 51(17): 11275–11288. doi: 10.1103/PhysRevB.51.11275 CrossRefGoogle Scholar
  20. 20.
    Hong JW, Bathe KJ (2003) On analytical transformations for efficiency improvements in the method of finite spheres. In: Bathe KJ (ed) Comput Fluid Solid Mechanics, vol 1. ElsevierGoogle Scholar
  21. 21.
    Hong JW, Bathe KJ (2005) Coupling and enrichment schemes for finite element and finite sphere discretizations. Comput Struct 83(17–18): 1386–1395MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kilic B (2009) Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. PhD Thesis, The University of ArizonaGoogle Scholar
  23. 23.
    Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156(2): 165–177CrossRefGoogle Scholar
  24. 24.
    Kilic B, Madenci E (2009) Structural stability and failure analysis using peridynamic theory. Int J Non-linear Mech 44(8): 845–854zbMATHCrossRefGoogle Scholar
  25. 25.
    Kozicki J, Tejchman J (2006) 2D lattice model for fracture in brittle materials. Arch Hydro-Eng Environ Mech 53(2): 71–88Google Scholar
  26. 26.
    Kozicki J, Tejchman J (2008) Modelling of fracture process in concrete using a novel lattice model. Granul Matter 10(5): 377–388CrossRefGoogle Scholar
  27. 27.
    Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56(4): 1566–1577MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15): 1169–1178MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mase GT, Smelser RE, Mase GE (1999) Continuum mechanics for engineers. CRC, Boca RatonzbMATHCrossRefGoogle Scholar
  30. 30.
    Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7): 813–833CrossRefGoogle Scholar
  31. 31.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150zbMATHCrossRefGoogle Scholar
  32. 32.
    Nishioka T (1995) Recent developments in computational dynamic fracture mechanics. Dynamic fracture mechanics (A 96-14151 02-39). Computational Mechanics Publications, Billerica, pp 1–60Google Scholar
  33. 33.
    Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179(11): 777–783zbMATHCrossRefGoogle Scholar
  34. 34.
    Parks ML, Plimpton SJ, Lehoucq RB, Silling SA (2008) Peridynamics with LAMMPS: A user guide. Tech. rep., Technical Report SAND 2008-1035, Sandia National Laboratories, LivermoreGoogle Scholar
  35. 35.
    Sanford RJ (2003) Principles of fracture mechanics. Prentice Hall, New DelhiGoogle Scholar
  36. 36.
    Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1): 175–209MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Silling SA (2010) Linearized theory of peridynamic states. J Elast 99(1): 85–111MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18): 1526–1535CrossRefGoogle Scholar
  39. 39.
    Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-linear Mech 40(2–3): 395–409zbMATHCrossRefGoogle Scholar
  40. 40.
    Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93(1): 13–37. doi: 10.1007/s10659-008-9163-3 MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44: 73–168CrossRefGoogle Scholar
  42. 42.
    Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a peridynamic bar. J Elast 73(1): 173–190MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2): 151–184. doi: 10.1007/s10659-007-9125-1 MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Tay TE (2003) Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl Mech Rev 56: 1CrossRefGoogle Scholar
  45. 45.
    Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 46(5): 1186–1195zbMATHCrossRefGoogle Scholar
  46. 46.
    Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53(3): 705–728MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Zimmermann M (2005) A continuum theory with long-range forces for solids. PhD Thesis, Massachusetts Institute of TechnologyGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations