Skip to main content
Log in

Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a new approach for the numerical homogenization of cellular and heterogeneous materials. The procedure is based on the finite cell method, which is applied to efficiently discretize representative volume elements for which effective material properties are computed. The starting point for our homogenization might be either a computer-aided design of a heterogeneous material or a three-dimensional computer tomography (CT-scan) of the specimen of interest. A fully automatic discretization in terms of finite cells, applying a hierarchic extension process to control the discretization error, is utilized to solve the corresponding boundary value problems arising during the homogenization. Special emphasis is placed on the numerical treatment of boundary conditions. To this end we apply the window method, which can be interpreted as a variant of the self-consistency method. Several numerical examples ranging from porous materials to fiber-reinforced composites will be presented, demonstrating the efficiency of our approach. The homogenization procedure will be also applied to a foam, a CT-scan of which is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboudi J (1991) Mechanics of composite materials. Elsevier, Amsterdam

    MATH  Google Scholar 

  2. Anderson WB, Chen CP, Lakes RS (1994) Experimental study of size effects and surface damage in closed-cell polymethacrylimide and open-cell copper foams. Cellular Polym 13(1): 1–15

    Google Scholar 

  3. Barbero E (2007) Finite element analysis of composite materials. CRC Press, Boca Raton

    Google Scholar 

  4. Bower A (2009) Applied mechanics of solids. CRC Press, Boca Raton

    Google Scholar 

  5. Brezny R, Green DJ (1990) Characterization of edge effects in cellular materials. J Mater Sci 25: 4571–4578

    Article  Google Scholar 

  6. Chen C, Fleck NA (2002) Size effects in the constrained deformation of metallic foams. J Mech Phys Solids 50: 955–977

    Article  MATH  Google Scholar 

  7. Del Pino S, Pironneau O (2003) A fictitious domain based general pde solver. In: Kuznetsov PNY, Pironneau O (eds) Numerical methods for scientific computing variational problems and applications. CIMNE, Barcelona

  8. Düster A, Bröker H, Heidkamp H, Heißerer U, Kollmannsberger S, Wassouf Z, Krause R, Muthler A, Niggl A, Nübel V, Rücker M, Scholz D (2004) AdhoC 4—User’s Guide. Lehrstuhl für Bauinformatik, Technische Universität München

  9. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197: 3768–3782

    Article  MATH  Google Scholar 

  10. Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52: 673–703

    Article  MATH  Google Scholar 

  11. Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192: 3233–3244

    Article  MATH  Google Scholar 

  12. Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput Methods Appl Mech Eng 183: 309–330

    Article  MATH  Google Scholar 

  13. Fish J, Belsky V (1995) Multigrid method for periodic heterogeneous media. Part 2: multiscale modeling and quality control in multidimensional case. Comput Methods Appl Mech Eng 126: 17–38

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilat, R, Banks-Sills, L (eds) (2009) Advances in mathematical modeling and experimental methods for materials and structures—The Jacob Aboudi volume. Springer, New York

    Google Scholar 

  15. Gong L, Kyriakides S (2005) Compressive response of open cell foams. Part II: initiation and evolution of crushing. Int J Solids Struct 42: 1381–1399

    Article  MATH  Google Scholar 

  16. Gong L, Kyriakides S, Jang WY (2005) Compressive response of open-cell foams. Part I: morphology and elastic properties. Int J Solids Struct 42: 1355–1379

    Article  MATH  Google Scholar 

  17. Hain M (2007) Computational Homogenization of micro-structural damage due to frost in hardened cement paste. PhD thesis, Institut für Baumechanik und Numerische Mechanik, Leibniz-Universität Hannover

  18. Hain M, Wriggers P (2008) Numerical homogenization of hardened cement paste. Comput Mech 42: 197–212

    Article  MATH  Google Scholar 

  19. Hirschberger CB, Sukumar N, Steinmann P (2008) Computational homogenization of material layers with micromorphic mesostructure. Philos Mag 88: 3603–3631

    Article  Google Scholar 

  20. Hohe J, Becker W (2003) Effective mechanical behavior of hyperelastic honeycombs and two-dimensional model foams at finite strain. Int J Mech Sci 45: 891–913

    Article  MATH  Google Scholar 

  21. Huber AT, Gibson LJ (1988) Anisotropy of foams. J Mater Sci 23: 3031–3040

    Article  Google Scholar 

  22. Jang WY, Kraynik AM, Kyriakides S (2008) On the microstructure of open-cell foams and its effect on elastic properties. Int J Solids Struct 45: 1845–1875

    Article  MATH  Google Scholar 

  23. Jänicke R, Diebels S, Sehlhorst HG, Düster A (2009) Two-scale modelling of micromorphic continua. Continuum Mech Thermodyn 12: 297–315

    Article  Google Scholar 

  24. Kari S, Berger H, Gabbert U (2007) Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Comput Mater Sci 39: 198–204

    Article  Google Scholar 

  25. Kouznetsova V (2002) Computational homogenization for the multi-scale analysis of multi-phase materials. PhD thesis, Materials Technology, Eindhoven University of Technology

  26. Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54: 1235–1260

    Article  MATH  Google Scholar 

  27. Lakes RS (1983) Size effects and micromechanics of porous solids. J Mater Sci 18: 2572–2580

    Article  Google Scholar 

  28. Loehnert S, Wriggers P (2008) Effective behaviour of elastic heterogeneous thin structures at finite deformations. Comput Mech 41: 595–606

    Article  MATH  Google Scholar 

  29. Löhnert S (2005) Computational homogenization of microheterogeneous materials at finite strains including damage. Ph.D. thesis, Institut für Baumechanik und Numerische Mechanik, Universität Hannover

  30. Matzenmiller A, Kurnatowski B (2009) A comparison of micromechanical models for the homogenization of microheterogeneous elastic composites. In: Gilat R, Banks-Sills L (eds) Advances in mathematical modeling and experimental methods for materials and structures—The Jacob Aboudi volume. Springer, New York

  31. Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72: 300–317

    Article  MATH  Google Scholar 

  32. Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171: 387–418

    Article  MATH  Google Scholar 

  33. Miehe C, Schröder J, Bayreuther C (2002) On the homogenization analysis of composite materials based on discretized fluctuations on the micro–structure. Acta Mech 155: 1–16

    Article  MATH  Google Scholar 

  34. Miehe C, Schröder J, Becker M (2002) Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction. Comput Methods Appl Mech Eng 191: 4971– 5005

    Article  MATH  Google Scholar 

  35. Neittaanmäki P, Tiba D (1995) An embedding of domains approach in free boundary problems and optimal design. SIAM J Control Optim 33(5): 1587–1602

    Article  MathSciNet  MATH  Google Scholar 

  36. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials, 2nd edn. North-Holland, Amsterdam

    Google Scholar 

  37. Oden J, Zhodi T (1997) Analysis and adaptive modeling of highly heterogeneous elastic structures. Comput Methods Appl Mech Eng 148: 367–391

    Article  MATH  Google Scholar 

  38. Onck PR (2002) Cosserat modeling of cellular solids. C R Mecanique 330: 717–722

    Article  MATH  Google Scholar 

  39. Parvizian J, Düster A, Rank E (2007) Finite cell method—h- and p-extension for embedded domain problems in solid mechanics. Comput Mech 41: 121–133

    Article  MathSciNet  MATH  Google Scholar 

  40. Saul’ev VK (1963) On solution of some boundary value problems on high performance computers by fictitious domain method. Sib Math J 4: 912–925

    MathSciNet  Google Scholar 

  41. Schenk O, Wächter A, Hagemann M (2007) Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Comput Optim Appl 36(2–3): 321–341

    Article  MathSciNet  MATH  Google Scholar 

  42. Schenk O, Bollhöfer M, Römer RA (2008) On large scale diagonalization techniques for the Anderson model of localization. SIAM Rev 50(1): 91–112

    Article  MathSciNet  MATH  Google Scholar 

  43. Schröder J (1996) Theoretische und algorithmische Konzepte zur phänomenologischen Beschreibung anisotropen Materialverhaltens. PhD thesis, Institut für Baumechanik und Numerische Mechanik, Universität Hannover

  44. Schröder J (2000) Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitätsproblemen. Postdoctoral thesis, Institut für Mechanik (Bauwesen) Lehrstuhl I, Universität Stuttgart

  45. Schröder J (2000) Zu Stabilitätsproblemen bei Mikro–Makro–Übergängen. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 80: 411–412

    Article  Google Scholar 

  46. Sehlhorst HG, Jänicke R, Düster A, Rank E, Steeb H, Diebels S (2009) Numerical investigations of foam-like materials by nested high-order finite element methods. Comput Mech 45: 45–59

    Article  MATH  Google Scholar 

  47. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  48. Szabó B, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1, chap 5. Wiley, New York, pp 119–139

    Google Scholar 

  49. Wang J, Wang H, Xiuhua C, Yin Y (2010) Experimental and numerical study of the elastic properties of PMI. J Mater Sci 45: 2688–2695

    Article  Google Scholar 

  50. Warren WE, Kraynik AM (1991) The nonlinear elastic behavior of open-cell foams. J Appl Mech 58: 376–381

    Article  MATH  Google Scholar 

  51. Wismans JGF, Govaert LE, van Dommelen JAW (2010) X-ray computed tomography-based modeling of polymeric foams: the effect of finite element model size on the large strain response. J Polym Sci B 48: 1526–1534

    Article  Google Scholar 

  52. Zhodi T, Wriggers P (2005) Introduction to computational micromechanics. Lecture notes in applied and computational mechanics, vol 20. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Düster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Düster, A., Sehlhorst, HG. & Rank, E. Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 50, 413–431 (2012). https://doi.org/10.1007/s00466-012-0681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0681-2

Keywords

Navigation