Skip to main content
Log in

Semi-implicit formulation of the immersed finite element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The immersed finite element method (IFEM) is a novel numerical approach to solve fluid–structure interaction types of problems that utilizes non-conforming meshing concept. The fluid and the solid domains are represented independently. The original algorithm of the IFEM follows the interpolation process as illustrated in the original immersed boundary method where the fluid velocity and the interaction force are explicitly coupled. However, the original approach presents many numerical difficulties when the fluid and solid physical properties have large mismatches, such as when the density difference is large and when the solid is a very stiff material. Both situations will lead to divergent or unstable solutions if not handled properly. In this paper, we develop a semi-implicit formulation of the IFEM algorithm so that several terms of the interfacial forces are implicitly evaluated without going through the force distribution process. Based on the 2-D and 3-D examples that we study in this paper, we show that the semi-implicit approach is robust and is capable of handling these highly discontinuous physical properties quite well without any numerical difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian Finite Element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu WK, Ma DC (1982) Computer implementation aspects for fluid-structure interaction problems. Comput Methods Appl Mech Eng 31: 129–148

    Article  MATH  Google Scholar 

  3. Huerta A, Liu WK (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69: 277–324

    Article  MATH  Google Scholar 

  4. Liu WK, Chang H, Chen J, Belytschko T (1988) Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua. Comput Methods Appl Mech Eng 68: 259–310

    Article  MATH  Google Scholar 

  5. Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J Comput Phys 169: 427–462

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang LT, Wagner G, Liu WK (2003) Modeling and simulation of fluid structure interaction by meshfree and FEM. Commun Numer Methods Eng 19: 615–621

    Article  MATH  Google Scholar 

  7. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25: 220–252

    Article  MathSciNet  MATH  Google Scholar 

  8. McCracken MF, Peskin CS (1980) A vortex method for blood flow through heart valves. J Comput Phys 35: 183–205

    Article  MathSciNet  MATH  Google Scholar 

  9. McQueen DM, Peskin CS (1983) Computer-assisted design of pivoting-disc prosthetic mitral valves. J Comput Phys 86: 126–135

    Google Scholar 

  10. Peskin CS, McQueen DM (1989) A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 81(2): 372–405

    Article  MathSciNet  MATH  Google Scholar 

  11. Peskin CS, McQueen DM (1992) Cardiac fluid dynamics. Critical Reviews in Biomedical Engineering. SIAM J Scientific Stat Comput 20(6): 451–459

    Google Scholar 

  12. Peskin CS, McQueen DM (1994) Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. Am J Physiol 266(1): H319–H328

    Google Scholar 

  13. Peskin CS, McQueen DM (1996) Case studies in mathematical modeling-ecology, physiology, and cell biology. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  14. LeVeque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31(4): 1044–1091

    Article  MathSciNet  Google Scholar 

  15. LeVeque RJ, Li Z (1997) Immersed interface methods for stokes flow with elastic boundaries or surface tension. SIAM J Scientific Comput 18(3): 709–735

    Article  MathSciNet  MATH  Google Scholar 

  16. Fogelson AL, Keener JP (2000) Immersed interface method for Neumann and related problems in two and three dimensions. SIAM J Scientific Comput 22(5): 1630–1654

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee L, LeVeque RJ (2003) An immersed interface method for incompressible Navier-Stokes equations. SIAM J Scientific Comput 25(3): 832–856

    Article  MathSciNet  MATH  Google Scholar 

  18. Li Z, Lai MC (2001) The immersed interface mehtods for the Navier-Stokes equations with singular forces. J Comput Phys 171: 822–842

    Article  MathSciNet  MATH  Google Scholar 

  19. Wiegmann A, Bube KP (1998) The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 35(1): 177–200

    Article  MathSciNet  MATH  Google Scholar 

  20. Wiegmann A, Bube KP (2000) The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions. SIAM J Numer Anal 37(3): 827–862

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang X, Liu WK (2004) Extended immersed boundary method using FEM and RKPM. Comput Methods Appl Mech Eng 193: 1305–1321

    Article  MATH  Google Scholar 

  22. Boffi D, Gastaldi L (2003) A finite element approach for the immersed boundary method. Comput Struct 81: 491–501

    Article  MathSciNet  Google Scholar 

  23. Boffi D, Gastaldi L, Heltai L (2007) On the CFL condition for the finite element immersed boundary method. Comput Struct 85: 775–783

    Article  MathSciNet  Google Scholar 

  24. Zhang LT, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193: 2051–2067

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu WK, Liu Y, Zhang LT, Wang X, Gerstenberger A, Farrell D (2004) Immersed finite element method and applications to biological systems. Finite element methods: 1970ć6s and beyond. International Center for Numerical Methods and Engineering

  26. Liu Y, Liu WK (2006) Rheology of red blood cell aggregation in capillary by computer simulation. J Comput Phys 220: 139–154

    Article  MathSciNet  MATH  Google Scholar 

  27. Gay M, Zhang LT, Liu WK (2006) Stent modeling using immersed finite element method. Comput Methods Appl Mech Eng 195: 4358–4370

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu WK, Liu Y, Farrell D, Zhang LT, Wang S, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J, Hong J, Chen X, Hsu H (2006) Immersed finite element method and its applications to biological systems. Comput Methods Appl Mech Eng 195: 1722–1749

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang LT, Gay M (2007) Immersed finite element method for fluid-structure interactions. J Fluids Struct 23: 839–857

    Article  Google Scholar 

  30. Peskin CS (2002) The immersed boundary method. Acta Numerica 11: 479–517

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang X, Zhang LT (2010) Interpolation functions in the immersed boundary and finite element methods. Comput Mech 45(4): 321–334

    Article  MATH  Google Scholar 

  32. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43(5): 555–575

    Article  MathSciNet  MATH  Google Scholar 

  33. Gottlieb S, Shu C-W (1998) Total variation diminishing runge-kutta schemes. Math Comput 67(221): 73–85

    Article  MathSciNet  MATH  Google Scholar 

  34. Terashima H, Tryggvason G (2009) A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J Comput Phys 228: 4012–4037

    Article  MATH  Google Scholar 

  35. Karypis G, Kumar V (2009) Metis: unstructured graph partitioning and sparse matrix ordering system, Version 4.0. Technical report, University of Minnesota, Minneapolis, MN

  36. Knoll DA, Keyes DE (2004) Jacobian-free newton-krylov methods: a survey of approaches and applications. J Comput Phys 193(2): 357–397

    Article  MathSciNet  MATH  Google Scholar 

  37. Sadd Y, Schultz MH (1986) Gmres: a generalized minimal residual algorithm for solving non symmetric linear system. SIAM J Sci Stat Compact 7: 856–869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy T. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wang, C. & Zhang, L.T. Semi-implicit formulation of the immersed finite element method. Comput Mech 49, 421–430 (2012). https://doi.org/10.1007/s00466-011-0652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0652-z

Keywords

Navigation