Skip to main content
Log in

An embedded atom hyperelastic constitutive model and multiscale cohesive finite element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Based on embedded atom method (EAM), an embedded atom hyperelastic (EAH) constitutive model is developed. The proposed EAH constitutive model provides a multiscale formalism to determine mesoscale or macroscale material behavior by atomistic information. By combining the EAH with cohesive zone model (CZM), a multiscale embedded atom cohesive finite element model (EA-cohesive FEM) is developed for simulating failure of materials at mesoscale and macroscale, e.g. fracture and crack propagation etc. Based on EAH, the EA-cohesive FEM applies the Cauchy-Born rule to calculate mesoscale or macroscale material response for bulk elements. Within the cohesive zone, a generalized Cauchy-Born rule is applied to find the effective normal and tangential traction-separation cohesive laws of EAH material. Since the EAM is a realistic semi-empirical interatomic potential formalism, the EAH constitutive model and the EA-cohesive FEM are physically meaningful when it is compared with experimental data. The proposed EA-cohesive FEM is validated by comparing the simulation results with the results of large scale molecular dynamics simulation. Simulation result of dynamic crack propagation is presented to demonstrate the capacity of EA-cohesive FEM in capturing the dynamic fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams JB, Foiles SM (1990) Development of an embedded-atom potential for a bcc metal: vanadium. Phys Rev B 41(6): 3316–3328

    Article  Google Scholar 

  2. Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture: general ideas and hypothesis, axially symmetric cracks. Appl Math Mech (PMM) 23: 622–636

    Article  MathSciNet  MATH  Google Scholar 

  3. Borst Rd, Gutirrez MA, Wells GN, Remmers JJC, Askes H (2004) Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. Int J Numer Methods Eng 60(1): 289–315

    Article  MATH  Google Scholar 

  4. Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46(5): 2727–2742

    Article  Google Scholar 

  5. Baskes MI (1997) Determination of modified embedded atom method parameters for nickel. Mater Chem Phys 50(2): 152–158

    Article  Google Scholar 

  6. Braides A, Lew AJ, Ortiz M (2006) Effective cohesive behavior of layers of interatomic planes. Arch Ration Mech Anal 180: 151–182

    Article  MathSciNet  MATH  Google Scholar 

  7. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  8. Cao N, Chen S, Jin S, Mart D (1997) Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys Rev E 55(1): R21–R24

    Article  Google Scholar 

  9. Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50(17): 1285–1288

    Article  Google Scholar 

  10. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12): 6443–6453

    Article  Google Scholar 

  11. Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method: a review of theory and applications. Mater Sci Reports 9(7–8): 251–310

    Article  Google Scholar 

  12. Ewing JA, Walter R (1900) The crystalline structure of metals. Philos Trans R Soc Lond A 195: 279–301

    Article  Google Scholar 

  13. Ericksen JL (2008) On the Cauchy-Born rule. Math Mech Solids 13(3–4): 199–220

    Article  MathSciNet  MATH  Google Scholar 

  14. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12): 7983–7991

    Article  Google Scholar 

  15. Geubelle PH, Kulkarni MG, Matous K (2010) Coupled multi-scale cohesive modeling of failure in heterogeneous adhesives. Int J Numer Methods Eng 84: 916–946

    Article  MATH  Google Scholar 

  16. Gao H, Klein P (1998) Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J Mech Phys Solids 46(2): 187–218

    Article  MATH  Google Scholar 

  17. Hayes RL, Ortiz M, Carter EA (2004) Universal binding-energy relation for crystals that accounts for surface relaxation. Phys Rev B 69: 172104

    Article  Google Scholar 

  18. Hagen G, Papenbrock T, Hjorth-Jensen M (2010) Ab initio computation of the 17 f proton halo state and resonances in a = 17 nuclei. Phys Rev Lett 104(18): 182501

    Article  Google Scholar 

  19. Holian BL, Ravelo R (1995) Fracture simulations using large-scale molecular dynamics. Phys Rev B 51(17): 11275–11288

    Article  Google Scholar 

  20. Hong T, Freeman AJ (1991) Effect of antiphase boundaries on the electronic structure and bonding character of intermetallic systems: Nial. Phys Rev B 43(8): 6446–6458

    Article  Google Scholar 

  21. Jones JE (1924) On the determination of molecular fields. I: from the variation of the viscosity of a gas with temperature. Proc R Soc Lond Ser A 106(738): 441–462

    Article  Google Scholar 

  22. Jones JE (1924) On the determination of molecular fields. II: from the equation of state of a gas. Proc R Soc Lond A 106(738): 463–477

    Article  Google Scholar 

  23. Johnson RA, Oh DJ (1989) Analytic embedded atom method model for bcc metals. J Mater Res 4: 1195–1201

    Article  Google Scholar 

  24. Jensen F (2006) Introduction to computational chemistry. Wiley, New York

    Google Scholar 

  25. Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. Phys Rev B 37(8): 3924–3931

    Article  Google Scholar 

  26. Kaxiras E (2003) Atomic and electronic structure of solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Klein P, Gao H (1998) Crack nucleation and growth as strain localization in a virtual-bond continuum. Eng Fract Mech 61: 21–48

    Article  Google Scholar 

  28. Liu X., Li S., Sheng N. (2008) A cohesive finite element for quasi-continua. Comput Mech 42: 543–553

    Article  MATH  Google Scholar 

  29. Mishin Y, Mehl MJ, Papaconstantopoulos DA (2002) Embedded-atom potential for B2-N i Al. Phys Rev B 65(22): 224114

    Article  Google Scholar 

  30. Mei J, Davenport JW, Fernando GW (1991) Analytic embedded-atom potentials for fcc metals: application to liquid and solid copper. Phys Rev B 43(6): 4653–4658

    Article  Google Scholar 

  31. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150

    Article  MATH  Google Scholar 

  32. Nguyen O, Ortiz M (2002) Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior. J Mech Phys Solids 50: 1727–1741

    Article  MATH  Google Scholar 

  33. Oh DJ, Johnson RA (1992) Simple embedded atom method model for fcc and hcp metals. J Mater Res 3(3): 471–478

    Article  Google Scholar 

  34. Puska MJ, Nieminen RM, Manninen M (1981) Atoms embedded in an electron gas: immersion energies. Phys Rev B 24(6): 3037–3047

    Article  Google Scholar 

  35. Puska MJ, Nieminen RM (1983) Atoms embedded in an electron gas: phase shifts and cross sections. Phys Rev B 27(10): 6121–6128

    Article  Google Scholar 

  36. Qian J, Li S (2011) Application of multiscale cohesive zone model to simulate fracture in polycrystalline solids. ASME J Eng Mater Technol 133:011010

    Google Scholar 

  37. Schlick T (2002) Molecular modeling and simulation: an interdisciplinary guide. Springer-Verlag New York, Inc., Secaucus

    MATH  Google Scholar 

  38. Tadmor M, Ortiz EB, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6): 1529–1563

    Article  Google Scholar 

  39. van den Bosch MJ, Schreurs PJG, Geers MGD (2006) An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73(9): 1220–1234

    Article  Google Scholar 

  40. Xu XP, Needleman A (1994) Numerical simulations of fast crack-growth in brittle solids. J Mech Phys Solids 42(9): 1397–1434

    Article  MATH  Google Scholar 

  41. Yuan XJ, Chen NX, Shen J, Hu W (2010) Embedded-atom-method interatomic potentials from lattice inversion. J Phys: Condens Matter 22(37): 375503

    Article  Google Scholar 

  42. Yao H, Gao H (2007) Multi-scale cohesive laws in hierarchical materials. Int J Solids Struct 44(25–26): 8177–8193

    Article  MATH  Google Scholar 

  43. Zeng X, Li S (2010) A multiscale cohesive zone model and simulations of fractures. Comput Methods Appl Mech Eng 199(9–12): 547–556

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofan Li.

Additional information

National Natural Science Foundation of China (Grant 50878117; Key Project Grant 51038006); China Scholarship Council Project (M.H. HE-2009621076); NSF (Grant No. CMMI-0800744).

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Li, S. An embedded atom hyperelastic constitutive model and multiscale cohesive finite element method. Comput Mech 49, 337–355 (2012). https://doi.org/10.1007/s00466-011-0643-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0643-0

Keywords

Navigation