Skip to main content
Log in

B-spline goal-oriented error estimators for geometrically nonlinear rods

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We consider goal-oriented a posteriori error estimators for the evaluation of the errors on quantities of interest associated with the solution of geometrically nonlinear curved elastic rods. For the numerical solution of these nonlinear one-dimensional problems, we adopt a B-spline based Galerkin method, a particular case of the more general isogeometric analysis. We propose error estimators using higher order “enhanced” solutions, which are based on the concept of enrichment of the original B-spline basis by means of the “pure” k-refinement procedure typical of isogeometric analysis. We provide several numerical examples for linear and nonlinear output functionals, corresponding to the rotation, displacements and strain energy of the rod, and we compare the effectiveness of the proposed error estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams A (1975) Sobolev spaces. Academic Press, Boston

    MATH  Google Scholar 

  2. Ainsworth M, Oden J (2000) A posteriori error estimation in finite element analysis. John Wiley & Sons, New York

    Book  MATH  Google Scholar 

  3. Antman S (1995) Nonlinear problems of elasticity. Springer-Verlag, Berlin and New York

    MATH  Google Scholar 

  4. Babuška I, Miller A (1984) The post-processing approach in the finite element method—part 1: calculation of displacements, stresses and other higher order derivatives of the displacements. Int J Numer Methods Eng 20: 1085–1109

    Article  MATH  Google Scholar 

  5. Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. In: Lectures in Mathematics. ETH Zürich, Birkhäuser-Verlag, Basel

  6. Bazilevs Y, Calo V, Cottrell J, Evans J, Hughes T, Lipton S, Scott M, Sederberg T (2010) Isogeometric analysis using T-splines. Computer Methods Appl Mech Eng 199: 229–263

    Article  MATH  MathSciNet  Google Scholar 

  7. Bazilevs Y, da Veiga LB, Cottrell J, Hughes T, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16: 1031–1090

    Article  MATH  MathSciNet  Google Scholar 

  8. Becker R, Rannacher R (2001) An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10: 1–102

    Article  MATH  MathSciNet  Google Scholar 

  9. Bisshopp K, Drucker D (1945) Large deflection of cantilever beams. Quart Appl Math 3: 272–275

    MATH  MathSciNet  Google Scholar 

  10. Bottasso C, Maisano G, Micheletti S, Perotto S (2006) On some new recovery based a posteriori error estimators. Computer Methods Appl Mech Eng 195: 4794–4815

    Article  MATH  MathSciNet  Google Scholar 

  11. Campanile L, Hasse A (2008) A simple and effective solution to the elastica problem. J Mech Eng Sci 222(C12): 2513–2516

    Google Scholar 

  12. Chakraborty S, Majumdar S (1997) An arbitrary-shaped arch element for large deflection analysis. Computers Struct 65: 593–600

    Article  MATH  Google Scholar 

  13. Chen L (2010) An integral approach for large deflection cantilever beams. Int J Non-Linear Mech 45: 301–305

    Article  Google Scholar 

  14. Ciarlet P (1978) The finite element method for elliptic problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  15. Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis: towards integration of CAD and FEA. John Wiley & Sons

  16. Dörfel M, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Computer Methods Appl Mech Eng 199: 264–275

    Article  MATH  Google Scholar 

  17. Ebner A, Ucciferro J (1972) A theoretical and numerical comparison of elastic nonlinear finite element methods. Computers Struct 2: 1043–1061

    Article  Google Scholar 

  18. El-Zanaty M, Murray D (1983) Nonlinear finite element analysis of steel frames. J Struct Eng ASCE 109 ST2: 353–368

    Article  Google Scholar 

  19. Epstein M, Murray D (1976) Large deformation in-plane analysis of elastic beams. Computers Struct 6: 1–9

    Article  MATH  MathSciNet  Google Scholar 

  20. Giles M, Süli E (2002) Adjoint methods for pdes: a posteriori error analysis and postprocessing by duality. Acta Numerica 11: 145–236

    Article  MATH  MathSciNet  Google Scholar 

  21. Golley B (1984) The finite element solution to a class of elastica problems. Computer Methods Appl Mech Eng 26: 159–168

    Article  Google Scholar 

  22. Golley BW (1997) The solution of open and closed elasticas using intrinsic coordinate finite elements. Computer Methods Appl Mech Eng 146: 127–134

    Article  MATH  Google Scholar 

  23. Gummadi L, Palazotto A (1998) Large strain analysis of beam and arches undergoing large rotations. Int J Non-Linear Mech 33: 615–645

    Article  MATH  Google Scholar 

  24. Hsiao K, Hou F (1987) Nonlinear finite element analysis of elastic frames. Computers Struct 26: 693–701

    Article  MATH  Google Scholar 

  25. Hughes T (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola, New York

    MATH  Google Scholar 

  26. Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Computer Methods Appl Mech Eng 194: 4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  27. Ibrahimbegovic A, Frey F (1993) Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams. Int J Numer Methods Eng 36: 3239–3258

    Article  MATH  MathSciNet  Google Scholar 

  28. Izzuddin B, Chew A, Smith D (2004) Error estimation for geometrically non-linear analysis of framed structures. Int J Numer Methods Eng 61: 532–558

    Article  MATH  Google Scholar 

  29. Lee K (2001) Post-buckling of uniform cantilever column under a combined load. Int J Non-linear Mech 36: 813–816

    Article  MATH  Google Scholar 

  30. Litewka P, Rakowski J (1997) An efficient curved beam finite element. Int J Numer Methods Eng 40: 2629–2652

    Article  MATH  Google Scholar 

  31. Love A (1906) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge

    Google Scholar 

  32. Magnusson A, Ristinmaa M, Ljung C (2001) Behavior of the extensible elastica column. Int J Solids Struct 38: 8441–8457

    Article  MATH  Google Scholar 

  33. Mutyalarao M, Bharathi D, Rao BN (2010) On the uniqueness of large deflections of a uniform cantilever beam under a tip-concentrated rotational load. Int J Non-Linear Mech 45: 433–441

    Article  Google Scholar 

  34. Nedjar B, Reynier M (1998) Error on the constitutive relation in the nonlinear formulation of elastic beams: the plane case. Computer Methods Appl Mech Eng 160: 299–314

    Article  MATH  MathSciNet  Google Scholar 

  35. Oden J, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Computer Math Appl 41: 735–756

    Article  MATH  MathSciNet  Google Scholar 

  36. Petrolito J, Legge K (1996) Unified nonlinear elastic frame analysis. Computers Struct 60: 21–30

    Article  MATH  Google Scholar 

  37. Petrolito J, Legge K (2001) Nonlinear analysis of frames with curved members. Computers Struct 79: 727–735

    Article  Google Scholar 

  38. Piegl L, Tiller W (1997) The NURBS Book. Springer-Verlag, New York

    Book  Google Scholar 

  39. Quarteroni A, Sacco R, Saleri F (2007) Numerical mathematics. Springer-Verlag, Berlin

    MATH  Google Scholar 

  40. Quarteroni A, Valli A (1994) Numerical approximation of partial differential equations. Springer-Verlag, Berlin and Heidelberg

    MATH  Google Scholar 

  41. Saje M (1991) Finite element formulation of finite planar deformation of curved elastic beams. Computers Struct 39: 327–337

    Article  MATH  Google Scholar 

  42. Santos H, de Almeida JM (2010) Equilibrium-based finite element formulation for the geometrically exact analysis of planar framed structures. J Eng Mech 136: 1474–1490

    Article  Google Scholar 

  43. Schmidt W (1977) Finite element solutions for the elastica. J Eng Mech Division 103: 1171–1175

    Google Scholar 

  44. Sreekumar M, Nagarajan T, Singaperumal M (2009) Design of a shape memory alloy actuated compliant smart structure: elastica approach. J Mech Des 131: 061008

    Article  Google Scholar 

  45. Tang T, Jagota A, Hui CY (2005) Adhesion between single-walled carbon nanotubes. J Appl Phys 97: 074304–074306

    Article  Google Scholar 

  46. Xu Z, Mirmiran A (1997) Looping behaviour of arches using corotational finite element. Computers Struct 62: 1059–1071

    Article  MATH  Google Scholar 

  47. van der Zee K, Verhoosel C (2011) Isogeometric analysis-based goal-oriented error estimation for free-boundary problems. Finite Elem Anal Des 47: 600–609

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dedè.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedè, L., Santos, H.A.F.A. B-spline goal-oriented error estimators for geometrically nonlinear rods. Comput Mech 49, 35–52 (2012). https://doi.org/10.1007/s00466-011-0625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0625-2

Keywords

Navigation