Skip to main content
Log in

Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the static and free vibration analysis of laminated shells is performed by radial basis functions (RBFs) collocation, according to a layerwise deformation theory (LW). The present LW theory accounts for through-the-thickness deformation, by considering an Mindlin-like evolution of all displacements in each layer. The equations of motion and the boundary conditions are obtained by Carrera’s unified formulation, and further interpolated by collocation with RBFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koiter WT (1970) On the foundations of the linear theory of thin elastic shell. Proc Kon Nederl Akad Wetensch 73: 169–195

    MathSciNet  Google Scholar 

  2. Naghdi PM (1956) A survey of recent progress in the theory of elastic shells. Appl Mech Rev 9: 365–368

    Google Scholar 

  3. Ren JG (1987) Exact solutions for laminated cylindrical shells in cylindrical bending. Compos Sci Technol 29: 169–187

    Article  Google Scholar 

  4. Varadan TK, Bhaskar K (1991) Bending of laminated orthotropic cylindrical shells—an elasticity approach. Compos Struct 17: 141–156

    Article  Google Scholar 

  5. Noor AK, Rarig PL (1974) Three-dimensional solutions of laminated cylinders. Comput Methods Appl Mech Eng 3: 319–334

    Article  MATH  Google Scholar 

  6. Noor AK, Peters WS (1989) Stress, vibration and buckling of multilayered cylinders. J Struct Eng ASCE 115: 69–89

    Article  Google Scholar 

  7. Noor AK, Peters WS (1989) A posteriori estimates for shear correction factors in multilayered composite cylinders. J Eng Mech ASCE 115: 1225–1245

    Article  Google Scholar 

  8. Ye JQ, Soldatos KP (1994) Three-dimensional vibration of laminated cylinders and cylindrical panels with symmetric or antisymmetric cross-ply lay-up. Compos Eng 4: 429–444

    Article  Google Scholar 

  9. Grigolyuk EI, Kulikov GM (1988) General direction of the development of the theory of shells. Mekhanica Kompozitnykh Materialov 2: 287–298

    Google Scholar 

  10. Kapania RK, Raciti S (1989) Recent advances in analysis of laminated beams and plates. AIAA J 27: 923–946

    Article  MATH  MathSciNet  Google Scholar 

  11. Kapania RK (1989) A review on the analysis of laminated shells. J Press Vessel Technol 111: 88–96

    Google Scholar 

  12. Noor AK, Burton WS (1989) Assessment of shear deformation theories for multilayered composite plates. Appl Mech Rev 41: 1–18

    Article  Google Scholar 

  13. Noor AK, Burton WS (1990) Assessment of computational models for multilayered composite shells. Appl Mech Rev 43: 67–97

    Google Scholar 

  14. Noor AK, Burton WS, Bert CW (1996) Computational model for sandwich panels and shells. Appl Mech Rev 49: 155–199

    Article  Google Scholar 

  15. Soldatos KP, Timarci T (1993) A unified formulation of laminated composites, shear deformable, five-degrees-of-freedom cylindrical shell theories. Compos Struct 25: 165–171

    Article  Google Scholar 

  16. Reddy JN (1997) Mechanics of laminated composite plates, theory and analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  17. Hsu T, Wang JT (1970) A theory of laminated cylindrical shells consisting of layers of orthotropic laminae. AIAA J 8: 2141–2146

    Article  MATH  Google Scholar 

  18. Cheung YK, Wu CI (1972) Free vibrations of thick, layered cylinders having finite length with various boundary conditions. J Sound Vib 24: 189–200

    Article  MATH  Google Scholar 

  19. Srinivas S (1973) A refined analysis of composite laminates. J Sound Vib 30: 495–550

    Article  MATH  Google Scholar 

  20. Sun CT, Whitney JM (1973) On the theories for the dynamic response of laminated plates. AIAA J 11: 372–398

    Article  Google Scholar 

  21. Barbero EJ, Reddy JN, Teply JL (1990) General two-dimensional theory of laminated cylindrical shells. AIAA J 28: 544–553

    Article  MATH  Google Scholar 

  22. Cho KN, Bert CW, Striz AG (1991) Free vibrations of laminated rectangular plates analyzed by higher order individual-layer theory. J Sound Vib 145: 429–442

    Article  Google Scholar 

  23. Nosier A, Kapania RK, Reddy JN (1993) Free vibration analysis of laminated plates using a layer-wise theory. AIAA J 31: 2335–2346

    Article  MATH  Google Scholar 

  24. Gaudenzi P, Barboni R, Mannini A (1995) A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates. Compos Struct 30: 427–440

    Article  Google Scholar 

  25. Carrera E (1998) Evaluation of layer-wise mixed theories for laminated plates analysis. AIAA J 36: 830–839

    Article  Google Scholar 

  26. Carrera E (1998) Layer-wise mixed models for accurate vibration analysis of multilayered plates. J Appl Mech 65: 820–828

    Article  Google Scholar 

  27. Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 97: 10–215

    MathSciNet  Google Scholar 

  28. Carrera E (1999) Multilayered shell theories accounting for layerwise mixed description. Part 1: governing equations. AIAA J 37(9): 1107–1116

    Article  Google Scholar 

  29. Carrera E (1999) Multilayered shell theories accounting for layerwise mixed description. Part 2: numerical evaluations. AIAA J 37(9): 1117–1124

    Article  Google Scholar 

  30. Carrera E (1999) A study of transverse normal stress effect on vibration of multilayered plates and shells. J Sound Vib 225(5): 803–829

    Article  Google Scholar 

  31. Carrera E (1998) A Reissner’s mixed variational theorem applied to vibrational analysis of multilayered shell. J Appl Mech 66: 63–78

    Google Scholar 

  32. Dennis ST, Palazotto AN (1989) Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher-order shear theory. AIAA J 27(10): 1441–1447

    Article  MATH  Google Scholar 

  33. Merk J (1995) Hierarchische, Kontinuumbasiert Shalenelemente höhere Ordnung. PhD Dissertation, Institute for Statics and Dynamics, Universität Stuttgart, Stuttgart, Germany

  34. Di S, Ramm E (1993) Hybrid stress formulation for higher-order theory of laminated shell analysis. Comput Method Appl Mech Eng 109: 359–376

    Article  MATH  Google Scholar 

  35. Kansa EJ (1990) Multiquadrics: a scattered data approximation scheme with applications to computational fluid dynamics. I: Surface approximations and partial derivative estimates. Comput Math Appl 19(8/9): 127–145

    Article  MATH  MathSciNet  Google Scholar 

  36. Hon YC, Lu MW, Xue WM, Zhu YM (1997) Multiquadric method for the numerical solution of byphasic mixture model. Appl Math Comput 88: 153–175

    Article  MATH  MathSciNet  Google Scholar 

  37. Hon YC, Cheung KF, Mao XZ, Kansa EJ (1999) A multiquadric solution for the shallow water equation. ASCE J Hydraul Eng 125(5): 524–533

    Article  Google Scholar 

  38. Wang JG, Liu GR, Lin P (2002) Numerical analysis of biot’s consolidation process by radial point interpolation method. Int J Solids Struct 39(6): 1557–1573

    Article  MATH  Google Scholar 

  39. Liu GR, Gu YT (2001) A local radial point interpolation method (LRPIM) for free vibration analyses of 2-d solids. J Sound Vib 246(1): 29–46

    Article  Google Scholar 

  40. Liu GR, Wang JG (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54: 1623–1648

    Article  MATH  Google Scholar 

  41. Wang JG, Liu GR (2002) On the optimal shape parameters of radial basis functions used for 2-d meshless methods. Comput Methods Appl Mech Eng 191: 2611–2630

    Article  MATH  Google Scholar 

  42. Chen XL, Liu GR, Lim SP (2003) An element free galerkin method for the free vibration analysis of composite laminates of complicated shape. Compos Struct 59: 279–289

    Article  Google Scholar 

  43. Dai KY, Liu GR, Lim SP, Chen XL (2004) An element free galerkin method for static and free vibration analysis of shear-deformable laminated composite plates. J Sound Vib 269: 633–652

    Article  Google Scholar 

  44. Liu GR, Chen XL (2002) Buckling of symmetrically laminated composite plates using the element-free galerkin method. Int J Struct Stab Dyn 2: 281–294

    Article  MATH  Google Scholar 

  45. Liew KM, Chen XL, Reddy JN (2004) Mesh-free radial basis function method for buckling analysis of non-uniformity loaded arbitrarily shaped shear deformable plates. Comput Methods Appl Mech Eng 193: 205–225

    Article  MATH  Google Scholar 

  46. Huang YQ, Li QS (2004) Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method. Comput Methods Appl Mech Eng 193: 3471–3492

    Article  MATH  Google Scholar 

  47. Liu L, Liu GR, Tan VCB (2002) Element free method for static and free vibration analysis of spatial thin shell structures. Comput Methods Appl Mech Eng 191: 5923–5942

    Article  MATH  Google Scholar 

  48. Xiang S, Wang KM, Ai YT, Sha YD, Shi H (2009) Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories. Compos Struct 91(1): 31–37

    Article  Google Scholar 

  49. Xiang S, Shi H, Wang KM, Ai YT, Sha YD (2010) Thin plate spline radial basis functions for vibration analysis of clamped laminated composite plates. Eur J Mech A Solids 29: 844–850

    Article  Google Scholar 

  50. Ferreira AJM, Roque CMC, Jorge RMN (2006) Analysis of composite and sandwich plate by trigonometric layer-wise deformation theory and radial basis function. J Sandwich Struct Mater 8: 497–515

    Article  Google Scholar 

  51. Ferreira AJM (2003) A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos Struct 59: 385–392

    Article  Google Scholar 

  52. Ferreira AJM (2003) Thick composite beam analysis using a global meshless approximation based on radial basis functions. Mech Adv Mater Struct 10: 271–284

    Article  Google Scholar 

  53. Ferreira AJM, Roque CMC, Martins PALS (2003) Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method. Compos B 34: 627–636

    Article  Google Scholar 

  54. Carrera E (2001) Developments, ideas, and evaluations based upon reissner’s mixed variational theorem in the modelling of multilayered plates and shells. Appl Mech Rev 54: 301–329

    Article  Google Scholar 

  55. Carrera E (1996) C0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity. Int J Numer Methods Eng 39: 1797–1820

    Article  MATH  Google Scholar 

  56. Carrera E, Kroplin B (1997) Zig-zag and interlaminar equilibria effects in large deflection and post-buckling analysis of multilayered plates. Mech Compos Mater Struct 4: 69–94

    Google Scholar 

  57. Carrera E (1998) Evaluation of layer-wise mixed theories for laminated plate analysis. AIAA J 36: 830–839

    Article  Google Scholar 

  58. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. Geophys Res 176: 1905–1915

    Article  Google Scholar 

  59. Ferreira AJM, Fasshauer GE (2006) Computation of natural frequencies of shear deformable beams and plates by a rbf-pseudospectral method. Comput Methods Appl Mech Eng 196: 134–146

    Article  MATH  Google Scholar 

  60. Reddy JN, Liu CF (1985) A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci 23: 319–330

    Article  MATH  Google Scholar 

  61. Cinefra M, Carrera E, Nali P (2010) MITC technique extended to variable kinematic multilayered plate elements. Compos Struct 92: 1888–1895

    Article  Google Scholar 

  62. Cinefra M, Chinosi C, Della Croce L (2011) MITC9 shell elements based on refined theories for the analysis of isotropic cylindrical structures. Mech Adv Mater Struct (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. M. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, A.J.M., Carrera, E., Cinefra, M. et al. Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations. Comput Mech 48, 13–25 (2011). https://doi.org/10.1007/s00466-011-0579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0579-4

Keywords

Navigation