Skip to main content
Log in

The MITC9 shell element in plate bending: mathematical analysis of a simplified case

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We consider the 9-node shell element referred to as the MITC9 shell element in plate bending solutions and present a simplified mathematical analysis. The element uses bi-quadratic interpolations of the rotations and transverse displacement, and the “rotated Raviart-Thomas” interpolations for the transverse shear stresses. A rigorous mathematical analysis of the element is still lacking, even for the simplified case of plate solutions (that is, flat shells), although the numerical evidence suggests a good and reliable behavior. Here we start such an analysis by considering a very simple particular case; namely, a rectangular plate, clamped all around the boundary, and solved with a uniform decomposition. Moreover, we consider only the so-called limit case, corresponding to the limit equations that are obtained for the thickness t going to zero. While the mathematical analysis of the limit case is simpler, such analysis, in general, gives an excellent indication of whether shear locking is present in the real case t > 0. We detail that the element in the setting considered shows indeed optimal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bathe KJ (1996) Finite element procedures. Prentice Hall, New York

    Google Scholar 

  2. Zienkiewicz OC, Taylor RL (2005) The finite element method. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  3. Brezzi F, Bathe KJ, Fortin M (1989) Mixed-interpolated elements for Reissner/Mindlin plates. Int J Num Methods Eng 28: 1787–1801

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    MATH  Google Scholar 

  5. Bathe KJ, Brezzi F, Cho SW (1989) The MITC7 and MITC9 plate bending elements. Comput Struct 32: 797–814

    Article  MATH  Google Scholar 

  6. Bathe KJ, Bucalem M, Brezzi F (1990) Displacement and stress convergence of the MITC plate bending elements. J Eng Comput 7(4): 291–302

    Article  Google Scholar 

  7. Chapelle D, Bathe KJ (1998) Fundamental considerations for the finite element analysis of shell structures. Comput Struct 66:19–36, 711–712

    Google Scholar 

  8. Chapelle D, Bathe KJ (2011) The finite element analysis of shells—fundamentals, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  9. Lee PS, Bathe KJ (2002) On the asymptotic behavior of shell structures and the evaluation in finite element solutions. Comput Struct 80: 235–255

    Article  Google Scholar 

  10. Lee PS, Bathe KJ (2005) Insight into finite element shell discretizations by use of the basic shell mathematical model. Comput Struct 83: 69–90

    Article  Google Scholar 

  11. Blouza A, Brezzi F, Lovadina C (1991) On the classification of linearly elastic shells. CRAS Série I 328: 831–836

    MathSciNet  Google Scholar 

  12. Baiocchi C, Lovadina C (2002) A shell classification by interpolation. Mat Mod Methods Appl Sci 12: 1359–1380

    Article  MathSciNet  MATH  Google Scholar 

  13. Beirão da Veiga L (2003) Asymptotic energy behavior of two classical intermediate benchmark shell problems. Mat Mod Methods Appl Sci 13: 1279–1302

    Article  MATH  Google Scholar 

  14. Beirão da Veiga L, Chinosi C (2004) Numerical evaluation of the asymptotic energy behavior of intermediate shells with application to two classical benchmark tests. Comput Struct 82: 525–534

    Article  Google Scholar 

  15. Beirão da Veiga L (2005) Asymptotic study of the solution for pinched cylindrical shells. Comput Methods Appl Mech Eng 194: 1113–1139

    Article  MATH  Google Scholar 

  16. Hiller JF, Bathe KJ (2003) Measuring convergence of mixed finite element discretizations: an application to shell structures. Comput Struct 81: 639–654

    Article  MathSciNet  Google Scholar 

  17. Bathe KJ, Lee PS (2010) Measuring the convergence behavior of shell analysis schemes. Comput Struct (in press)

  18. Kardestuncer, H (ed) (1987) Finite element handbook. McGraw-Hill, New York

    MATH  Google Scholar 

  19. Bucalem M, Bathe KJ (2011) The mechanics of solids and structures—hierarchical modeling and the finite element solution. Springer, New York (in press)

  20. Bathe KJ (2009) The finite element method. In: Wah B (ed) Encyclopedia of computer science and engineering. Wiley, New York, pp 1253–1264

    Google Scholar 

  21. Lee PS, Bathe KJ (2010) The quadratic MITC plate and MITC shell elements in plate bending. Adv Eng Softw 41: 712–728

    Article  MATH  Google Scholar 

  22. Bathe KJ, Lee PS, Hiller JF (2003) Towards improving the MITC9 shell element. Comput Struct 81: 477–489

    Article  Google Scholar 

  23. Bucalem M, Bathe KJ (1993) Higher-order MITC general shell elements. Int J Numer Methods Eng 36: 3729–3754

    Article  MathSciNet  MATH  Google Scholar 

  24. Iosilevich A, Bathe KJ, Brezzi F (1997) On evaluating the inf-sup condition for plate bending elements. Int J Numer Methods Eng 40: 3639–3663

    Article  MathSciNet  MATH  Google Scholar 

  25. Chapelle D, Bathe KJ (2010) On the ellipticity condition for model-parameter dependent mixed formulations. Comput Struct 88: 581–587

    Article  Google Scholar 

  26. Brezzi F, Fortin M, Stenberg R (1991) Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math Model Methods Appl Sci 1: 125–151

    Article  MathSciNet  MATH  Google Scholar 

  27. Brezzi F, Evans JA, Hughes TJR, Marini LD (2010) New quadrilateral plate elements based on Twist-Kirchhoff theory. Comput Methods Appl Mech Eng (submitted)

  28. Stenberg R (1981) Blandade finita elementmetoder för två problem inom strömningsmekaniken och hållfathetsläran. Licentiatarbete, Department of Technical Physics and Mathematics, Helsinki University of Technology

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Jürgen Bathe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bathe, KJ., Brezzi, F. & Marini, L.D. The MITC9 shell element in plate bending: mathematical analysis of a simplified case. Comput Mech 47, 617–626 (2011). https://doi.org/10.1007/s00466-010-0565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0565-2

Keywords

Navigation