Skip to main content
Log in

A boundary-only meshless method for numerical solution of the Eikonal equation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The radial basis function (RBF) collocation methods for the numerical solution of partial differential equation have been popular in recent years because of their advantage. For instance, they are inherently meshless, integration free and highly accurate. In this article we study the RBF solution of Eikonal equation using boundary knot method and analog equation method. The boundary knot method (BKM) is a meshless boundary-type radial basis function collocation technique. In contrast with the method of fundamental solution (MFS), the BKM uses the non-singular general solution instead of the singular fundamental solution to obtain the homogeneous solution. Similar to MFS, the RBF is employed to approximate the particular solution via the dual reciprocity principle. In the current paper, we applied the idea of analog equation method (AEM). According to AEM, the nonlinear governing operator is replaced by an equivalent nonhomogeneous linear one with known fundamental solution and under the same boundary conditions. Finally numerical results and discussions are presented to show the validity and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardi M, Dalio F (1997) On the Bellman equation for some unbounded control problems. Nonlinear Differ Equ Appl 4: 491–510

    Article  MathSciNet  MATH  Google Scholar 

  2. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37: 229–256

    Article  MathSciNet  MATH  Google Scholar 

  3. Boue M, Dupuis P (1992) Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control. SIAM J Numer Anal 36: 667–695

    Article  MathSciNet  Google Scholar 

  4. Bruss AR (1982) The Eikonal equation: some results applicable to computer vision. J Math Phys 23: 890–896

    Article  MathSciNet  MATH  Google Scholar 

  5. Bryson S, Levy D (2003) High-order central WENO schemes for multidimensional Hamilton–Jacobi equations. SIAM J Numer Anal 41: 1339–1369

    Article  MathSciNet  MATH  Google Scholar 

  6. Cecil T, Qian J, Osher S (2004) Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J Comput Phys 196: 327–347

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng Y, Shu CW (2007) A discontinuous Galerkin finite element method for directly solving Hamilton–Jacobi equations. J Comput Phys 223: 398–415

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139: 195–228

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen W, Tanaka M (2000) New insights in boundary-only and domain-type RBF methods. Int J Nonlinear Sci Numer Simulation 1: 145–152

    MathSciNet  MATH  Google Scholar 

  10. Chen W, Tanaka M (2002) A meshfree, integration-free, and boundary-only RBF technique. Comput Math Appls 43: 379–391

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen W, Shen LJ, Shen ZJ, Yuan GW (2005) Boundary knot method for Poisson equations. Engrg Anal Bound Elem 29: 756–760

    Article  MATH  Google Scholar 

  12. Chen W (2002) Symmetric boundary knot method. Engrg Anal Bound Elem 26: 489–494

    Article  MATH  Google Scholar 

  13. Crandall MG, Lions PL (1983) Viscosity solution of Hamilton–Jacobi equations. Trans Amer Math Soc 227: 1–42

    Article  MathSciNet  Google Scholar 

  14. Danielsson P (1980) Euclidean distance mapping. Comput Graph Image Process 14: 227–248

    Article  Google Scholar 

  15. Deschamps T, Cohen LD (2002) Fast extraction of tubular and tree 3D surfaces with front propagation methods. Proc Intl Conf Pattern Recognition 731–734

  16. Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71: 16–30

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehghan M, Hosseinzadeh H (2010) Development of circular arc boundary elements method. Eng Anal Bound Elem. doi:10.1016/j.enganabound.2010.08.014

  18. Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79: 700–715

    Article  MathSciNet  MATH  Google Scholar 

  19. Dehghan M, Salehi R (2010) A seminumeric approach for solution of the Eikonal partial differential equation and its applications. Numer Meth Partial Diff Equ 26: 702–722

    MathSciNet  MATH  Google Scholar 

  20. Dehghan M, Salehi R (2009) The use of variational iteration method and Adomian decomposition method to solve the Eikonal equation and its application in the reconstruction problem. Commun Numer Meth Eng. doi:10.1002/cnm.1315A

  21. Duarte CA, Oden JT (1996) H-p clouds–an hp meshless method. Numer Method Partial Diff Eq 12: 673–705

    Article  MathSciNet  MATH  Google Scholar 

  22. Engquist B, Runborg O (1996) Multi-phase computations in geometric optics. J Comput Appl Math 74: 175–192

    Article  MathSciNet  MATH  Google Scholar 

  23. Hon YC, Chen W (2003) Boundary knot method for 2D and 3D Helmholtz and convection–diffusion problems under complicated geometry. Int J Numer Meth Engrg 56: 1931–1948

    Article  MATH  Google Scholar 

  24. Hu C, Shu CW (1999) A discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J Sci Comput 21: 666–690

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang GS, Peng DP (2000) Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J Sci Comput 21: 2126–2143

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin S, Xin Z (1998) Numerical passage from systems of conservation laws to Hamilton–Jacobi equations and relaxation schemes. SIAM J Numer Anal 35: 2385–2404

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin B, Zheng Y (2005) Boundary knot method for the Cauchy problem associated with the inhomogeneous Helmholtz equation. Eng Anal Bound Elem 29: 925–935

    Article  MATH  Google Scholar 

  28. Jin B, Chen W (2006) Boundary knot method based on geodesic distance for anisotropic problems. J Comput Phys 215: 614–629

    Article  MathSciNet  MATH  Google Scholar 

  29. Katsikadelis JT (1994) The analog equation method–a powerful BEM-based solution technique for solving linear and nonlinear engineering problems. In: Brebbia CA (eds) Boundary Element Method XVI. CLM Publications, Southampton, p 167

    Google Scholar 

  30. Katsikadelis JT, Nerantzaki MS (1999) The boundary element method for nonlinear problems. Eng Anal Bound Elem 23: 365–373

    Article  MATH  Google Scholar 

  31. Katsikadelis JT, Nerantzaki MS (2001) A Boundary element solution to the soap bubble problem. Comput Mech 27: 154–159

    Article  MATH  Google Scholar 

  32. Katsikadelis JT (2002) The analog equation method. A boundary-only integral equation method for nonlinear static and dynamic problems in general bodies. Int J Theor Appl Mech 27: 13–38

    Article  MathSciNet  MATH  Google Scholar 

  33. Katsikadelis JT, Tsiatas GC (2003) Nonlinear dynamic analysis of heterogeneous orthotropic membranesby the analog equation method. Eng Anal Bound Elem 27: 115–124

    Article  MATH  Google Scholar 

  34. Katsikadelis JT (2008) The 2D elastostatic problem in inhomogeneous anisotropic bodies by the meshless analog equation method(MAEM). Eng Anal Bound Elem 32: 997–1005

    Article  Google Scholar 

  35. Katsikadelis JT (2009) The meshless analog equation method. I. Solutionvof elliptic partial differential equations. Arch Appl Mech 79: 557–578

    Article  Google Scholar 

  36. Kimmel R, Sethian JA (2001) Optimal algorithm for shape from shading and path planning. J Math Imaging Vis 14: 237–244

    Article  MathSciNet  MATH  Google Scholar 

  37. Kimmel R, Bruckstein AM (1993) Shape offsets via level sets. Comput Aided Des 25: 154–162

    Article  MATH  Google Scholar 

  38. Kimmel R, Shaked D, Kiryati N, Bruckstein A (1995) Skeletonization via distance maps and level sets. Comput Vis Image Unders 62: 382–391

    Article  Google Scholar 

  39. Kim DW, Liu WK (2006) Maximum principle and convergence analysis for the meshfree point collocation method. SIAM J Numer Anal 44: 515–539

    Article  MathSciNet  MATH  Google Scholar 

  40. Kim DW, Yoon YC, Liu WK, Belytschko T (2007) Extrinsic meshfree approximation using asymptotic expansion for interfacial discontinuity of derivative. J Comput Phys 221: 370–394

    Article  MathSciNet  MATH  Google Scholar 

  41. Kim DW, Liu WK, Yoon YC, Belytschko T, Lee SH (2007) Meshfree point collocation method with intrinsic enrichment for interface problems. Comput Mech 40: 1037–1052

    Article  MathSciNet  MATH  Google Scholar 

  42. Li F, Shu CW, Zhao YT, Zhao H (2008) A second order discontinuous Galerkin fast sweeping method for Eikonal equations. J Comput Phys 227: 8191–8208

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu WK, Jun S, Zhang Y (2005) Reproducing kernel particle method. Int J Numer Methods Fluids 20: 1081–1106

    Article  MathSciNet  Google Scholar 

  44. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38: 1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  45. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  46. Liu WK, Li S, Belytschko T (1997) Moving least squares reproducing kernelm ethods, Part I. methodology and convergence. Comput Methods Appl Mech Eng 143: 113–154

    Article  MathSciNet  MATH  Google Scholar 

  47. Li G, Aluru NR (2002) Boundary cloud method: a combined scattered point/boundary integral approach for boundary-only analysis. Comput Meth Appl Mech Engrg 191: 2337–2370

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu GR, Gu YT (2001) A point interpolation method for two dimensional solid. Int J Numer Meth Engrg 50: 937–951

    Article  MATH  Google Scholar 

  49. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12): 1013–1024

    Article  Google Scholar 

  50. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Engrg 139: 289–314

    Article  MathSciNet  MATH  Google Scholar 

  51. Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl Numer Math 60: 245–262

    Article  MathSciNet  MATH  Google Scholar 

  52. Mitchell IM, Sastry S (2003) Continuous path planning with multiple constraint. IEEE 5: 5502–5507

    Google Scholar 

  53. Mukherjee YX, Mukherjee S (1997) The boundary node method for potential problems. Int J Numer Meth Engrg 40: 797–815

    Article  MATH  Google Scholar 

  54. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput Mech 10: 307–318

    Article  MATH  Google Scholar 

  55. Osher S (1993) A level set formulation for the solution of the Dirichlet problem for Hamilton–Jacobi equations. SIAM J Math Anal 24: 1145–1152

    Article  MathSciNet  MATH  Google Scholar 

  56. Osher S, Sethian J (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79: 12–49

    Article  MathSciNet  MATH  Google Scholar 

  57. Osher S, Shu CW (1991) High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J Numer Anal 28: 907–922

    Article  MathSciNet  MATH  Google Scholar 

  58. Rouy E, Tourin A (1992) A viscosity solutions approach to shape-from-shading. SIAM J Numer Anal 29: 867–884

    Article  MathSciNet  MATH  Google Scholar 

  59. Rawlinson N, Sambridge M (2005) The fast marching method: an effective tool for tomographics imaging and tracking multiple phases in complex layered media. Explor Geophys 36: 341–350

    Article  Google Scholar 

  60. Shu C-W (2004) High order numerical methods for time dependent Hamilton–Jacobi equations. WSPC/Lecture Notes Series

  61. Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Meth Eng 43: 839–887

    Article  MathSciNet  MATH  Google Scholar 

  62. Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Modell 33: 1729–1738

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang F, Chen W, Jiang X (2009) Investigation of regularized techniques for boundary knot method. Commun Numer Method Eng doi:10.1002/cnm.1275

  64. Zhu T, Zhang JD, Atluri SN (1998) A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approaches. Comput Mech 21: 223–235

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang YT, Zhao HK, Qian J (2006) High order fast sweeping methods for static Hamilton–Jacobi equations. J Sci Comput 29: 25–56

    Article  MathSciNet  Google Scholar 

  66. Zhang YT, Shu CW (2003) High order WENO schemes for Hamilton–Jacobi equations on triangular meshes. SIAM J Sci Comput 24: 1005–1030

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghan, M., Salehi, R. A boundary-only meshless method for numerical solution of the Eikonal equation. Comput Mech 47, 283–294 (2011). https://doi.org/10.1007/s00466-010-0547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0547-4

Keywords

Navigation