Skip to main content
Log in

An algebraic variational multiscale-multigrid method for large-eddy simulation: generalized-α time integration, Fourier analysis and application to turbulent flow past a square-section cylinder

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This article studies three aspects of the recently proposed algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent flow. First, the method is integrated into a second-order-accurate generalized-α time-stepping scheme. Second, a Fourier analysis of a simplified model problem is performed to assess the impact of scale separation on the overall performance of the method. The analysis reveals that scale separation implemented by projective operators provides modeling effects very close to an ideal small-scale subgrid viscosity, that is, it preserves low frequencies, in contrast to non-projective scale separations. Third, the algebraic variational multiscale-multigrid method is applied to turbulent flow past a square-section cylinder. The computational results obtained with the method reveal, on the one hand, the good accuracy achievable for this challenging test case already at a rather coarse discretization and, on the other hand, the superior computing efficiency, e.g., compared to a traditional dynamic Smagorinsky modeling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Visual Sci 3: 47–59

    Article  MATH  Google Scholar 

  2. Collis SS (2001) Monitoring unresolved scales in multiscale turbulence modeling. Phys Fluids 13: 1800–1806

    Article  Google Scholar 

  3. Sagaut P (2006) Large eddy simulation for incompressible flows, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  4. John V (2004) Large eddy simulation of turbulent incompressible flows. Springer, Berlin

    MATH  Google Scholar 

  5. Berselli LC, Iliescu T, Layton WJ (2006) Mathematics of large eddy simulation of turbulent flows. Springer, Berlin

    MATH  Google Scholar 

  6. Moin P (2002) Advances in large eddy simulation methodology for complex flows. Int J Heat Fluid Flow 23: 710–720

    Article  Google Scholar 

  7. Gravemeier V (2006) The variational multiscale method for laminar and turbulent flow. Arch Comput Meth Eng 13: 249–324

    Article  MATH  MathSciNet  Google Scholar 

  8. Gravemeier V, Gee MW, Wall WA (2009) An algebraic variational multiscale-multigrid method based on plain aggregation for convection–diffusion problems. Comput Methods Appl Mech Eng 198: 3821–3835

    Article  MathSciNet  Google Scholar 

  9. Gravemeier V, Gee MW, Kronbichler M, Wall WA (2010) An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow. Comput Methods Appl Mech Eng 199: 853–864

    Article  MATH  MathSciNet  Google Scholar 

  10. Hackbusch W (1985) Multigrid methods and applications. Computational mathematics, vol. 4. Springer, Berlin

    Google Scholar 

  11. Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial, 2nd edn. SIAM, Philadelphia

    MATH  Google Scholar 

  12. Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Elsevier Academic Press, London

    MATH  Google Scholar 

  13. Lin PT, Sala M, Shadid JN, Tuminaro RS (2006) Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport. Int J Numer Methods Eng 67: 208–225

    Article  MATH  Google Scholar 

  14. Vaněk P, Mandel J, Brezina M (1996) Algebraic multigrid based on smoothed aggregation for second and fourth order problems. Computing 56: 179–196

    Article  MATH  MathSciNet  Google Scholar 

  15. Tezduyar TE, Sathe S (2005) Enhanced-discretization successive update method (EDSUM). Int J Numer Methods Fluids 47: 633–654

    Article  MATH  MathSciNet  Google Scholar 

  16. Lallemand M-H, Steve H, Dervieux A (1992) Unstructured multigridding by volume agglomeration: current status. Comput Fluids 21: 397–433

    Article  MATH  Google Scholar 

  17. Mavriplis DJ, Venkatakrishnan V (1996) A 3D agglomeration multigrid solver for the Reynolds-averaged Navier–Stokes equations on unstructured meshes. Int J Numer Methods Fluids 23: 527–544

    Article  MATH  Google Scholar 

  18. Carre G, Lanteri S (2000) Parallel linear multigrid by agglomeration for the acceleration of 3D compressible flow calculations on unstructured meshes. Num Alg 24: 309–322

    Article  MATH  MathSciNet  Google Scholar 

  19. Koobus B, Farhat C (2004) A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes: application to vortex shedding. Comput Methods Appl Mech Eng 193: 1367–1383

    Article  MATH  MathSciNet  Google Scholar 

  20. Voke PR (1989) Multiple mesh simulation of low Reynolds number turbulent channel flow. In: Taylor C, Gresho PM, Sani R, Hauser J (eds) Numerical methods in laminar and turbulent flow, vol 6. Pineridge Press, Swansea, pp 1567–1577

  21. Terracol M, Sagaut P, Basdevant C (2001) A multilevel algorithm for large-eddy simulation of turbulent compressible flows. J Comput Phys 167: 439–474

    Article  MATH  Google Scholar 

  22. Sagaut P, Deck S, Terracol M (2006) Multiscale and multiresolution approaches in turbulence. Imperial College Press, London

    Book  Google Scholar 

  23. Brandt A (1977) Multi-level adaptive solutions to boundary value problems. Math Comput 31: 333–390

    Article  MATH  MathSciNet  Google Scholar 

  24. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MATH  MathSciNet  Google Scholar 

  25. Rodi W, Ferziger JH, Breuer M, Pourquie M (1997) Status of large eddy simulation: results of a workshop. ASME J Fluids Eng 119: 248–262

    Article  Google Scholar 

  26. Voke PR (1997) Flow past a square cylinder: test case LES2. In: Chollet J-P, Voke PR, Kleiser L (eds) Direct and large eddy simulation II. Kluwer, Dordrecht, pp 355–374

    Google Scholar 

  27. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  28. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199: 780–790

    Article  MATH  MathSciNet  Google Scholar 

  29. Hughes TJR, Wells GN (2005) Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 194: 1141–1159

    Article  MATH  MathSciNet  Google Scholar 

  30. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    MATH  Google Scholar 

  31. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242

    Article  MATH  Google Scholar 

  32. Tezduyar TE (1992) Finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44

    Article  MATH  MathSciNet  Google Scholar 

  33. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolation. Comput Methods Appl Mech Eng 59: 85–99

    Article  MATH  MathSciNet  Google Scholar 

  34. Brooks AN, Hughes TJR (1982) Streamline Upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MATH  MathSciNet  Google Scholar 

  35. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26: 27–36

    Article  Google Scholar 

  36. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430

    Article  MATH  Google Scholar 

  37. Braack M, Burman E, John V, Lube G (2007) Stabilized finite element methods for the generalized Oseen problem. Comput Methods Appl Mech Eng 196: 853–866

    Article  MATH  MathSciNet  Google Scholar 

  38. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  39. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575

    Article  MATH  MathSciNet  Google Scholar 

  40. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840

    Article  MATH  MathSciNet  Google Scholar 

  41. Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev 91: 99–164

    Article  Google Scholar 

  42. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41: 453–465

    Article  MATH  Google Scholar 

  43. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319

    Article  MATH  MathSciNet  Google Scholar 

  44. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-a method. J Appl Mech 60: 371–375

    Article  MATH  MathSciNet  Google Scholar 

  45. Whiting CH, Jansen KE (2001) A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int J Numer Methods Fluids 35: 93–116

    Article  MATH  Google Scholar 

  46. Gamnitzer P, Gravemeier V, Wall WA (2010) Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow. Comput Methods Appl Mech Eng 199: 819–827

    Article  MATH  MathSciNet  Google Scholar 

  47. Vaněk P, Brezina M, Mandel J (2001) Convergence of algebraic multigrid based on smoothed aggregation. Numer Math 88: 559–579

    Article  MATH  MathSciNet  Google Scholar 

  48. Gravemeier V (2006) Scale-separating operators for variational multiscale large eddy simulation of turbulent flows. J Comput Phys 212: 400–435

    Article  MATH  MathSciNet  Google Scholar 

  49. Gravemeier V (2007) Variational multiscale large-eddy simulation of turbulent flow in a diffuser. Comput Mech 39: 477–495

    Article  MATH  Google Scholar 

  50. Kronbichler M (2007) Finite-element based variational multiscale methods for large eddy simulation of turbulent flows, Diploma Thesis, Technische Universität München

  51. Hemker PW (1990) On the order of prolongations and restrictions in multigrid procedures. J Comput Appl Math 32: 423–429

    Article  MATH  MathSciNet  Google Scholar 

  52. John V, Kaya S (2005) A finite element variational multiscale method for the Navier–Stokes equations. SIAM J Sci Comput 26: 1485–1503

    Article  MATH  MathSciNet  Google Scholar 

  53. Holmen J, Hughes TJR, Oberai AA, Wells GN (2004) Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow. Phys Fluids 16: 824–827

    Article  Google Scholar 

  54. Sohankar A, Davidson L, Norberg C (2000) Large eddy simulation of flow past a square cylinder: comparison of different subgrid scale models. ASME J Fluids Eng 122: 39–47

    Article  Google Scholar 

  55. Fureby C, Tabor G, Weller H, Gosman A (2000) Large eddy simulation of the flow around a square prism. AIAA J 38: 442–452

    Article  Google Scholar 

  56. Lee BE (1975) The effect of turbulence on the surface pressure field of square prisms. J Fluid Mech 69: 263–282

    Article  Google Scholar 

  57. Bearman P, Obasaju E (1982) An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders. J Fluid Mech 119: 279–321

    Article  Google Scholar 

  58. McLean I, Gartshore C (1992) Spanwise correlations of pressure on a rigid square section cylinder. J Wind Eng Ind Aerodyn 41: 797–808

    Article  Google Scholar 

  59. Norberg C (1993) Flow around rectangular cylinders: pressure forces and wake frequencies. J Wind Eng Ind Aerodyn 49: 187–196

    Article  Google Scholar 

  60. Luo SC, Yazdani MdG, Chew YT, Lee TS (1994) Effects of incidence and afterbody shape on flow past bluff cylinders. J Wind Eng Ind Aerodyn 53: 375–399

    Article  Google Scholar 

  61. Lyn DA, Rodi W (1994) The flapping shear layer formed by flow separation from the forward corner of a square cylinder. J Fluid Mech 267: 353–376

    Article  Google Scholar 

  62. Lyn DA, Einav S, Rodi W, Park J-H (1995) A laser-doppler-velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J Fluid Mech 304: 285–319

    Article  Google Scholar 

  63. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3: 1760–1765

    Article  MATH  Google Scholar 

  64. Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4: 633–635

    Article  Google Scholar 

  65. Jansen KE (1999) A stabilized finite element method for computing turbulence. Comput Methods Appl Mech Eng 174: 299–317

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Gravemeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravemeier, V., Kronbichler, M., Gee, M.W. et al. An algebraic variational multiscale-multigrid method for large-eddy simulation: generalized-α time integration, Fourier analysis and application to turbulent flow past a square-section cylinder. Comput Mech 47, 217–233 (2011). https://doi.org/10.1007/s00466-010-0541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0541-x

Keywords

Navigation