Computational Mechanics

, Volume 46, Issue 4, pp 635–640 | Cite as

Long-range correlations of elastic fields in semi-flexible fiber networks

Original Paper

Abstract

The mechanical properties of semi-flexible networks have been the subject of intense theoretical and experimental studies concerned primarily with the understanding of the complex behavior of biological systems such as the cell. Here it is shown that the elasticity of these networks, both elastic constants and elastic fields, while fluctuating significantly with position, is long-range correlated and the correlation functions exhibit power law scaling. The correlations are lost when the fiber stiffness is reduced. The range of scales over which correlations are observed is bounded below by the mean fiber segment length and above by the filament persistence length. Therefore, these networks can be regarded as stochastic fractal elastic media over the respective range of scales. This implies that no scale decoupling exists and no representative volume element can be identified on scales below the upper correlation cut-off scale.

Keywords

Fractals Homogenization Stochastic Elasticity Microstructural 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky L, Darnell J (2001) Molecular cell biology. Freeman, New YorkGoogle Scholar
  2. 2.
    Stossel TP (1994) The machinery of cell crawling. Sci Am 271: 54–63CrossRefGoogle Scholar
  3. 3.
    Chaudhuri O, Parekh SH, Fletcher DA (2007) Reversible stress softening of actin networks. Nature 445: 295–298CrossRefGoogle Scholar
  4. 4.
    Janmey PA, McCormick ME, Rammensee S, Leight JL, Georges PC, MacKintosh FC (2007) Negative normal stress in semiflexible biopolymer gels. Nat Mater 6: 48–51CrossRefGoogle Scholar
  5. 5.
    Storm C, Pastore JJ, Mackintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435: 191–194CrossRefGoogle Scholar
  6. 6.
    Pullarkat PA, Fernandez PA, Ott A (2007) Rheological properties of the Eukaryotic cell cytoskeleton. Phys Rep 449: 29–53CrossRefGoogle Scholar
  7. 7.
    Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3: 72–79CrossRefGoogle Scholar
  8. 8.
    Wu XF, Dzenis YA (2005) Elasticity of planar fiber networks. J Appl Phys 98: 093501CrossRefGoogle Scholar
  9. 9.
    Wagner B, Tharmann R, Haase I, Fischer M, Bausch AR (2006) Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties. Proc Natl Acad Sci USA 103: 13974–13978CrossRefGoogle Scholar
  10. 10.
    Gardel ML et al (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304: 1301–1305CrossRefGoogle Scholar
  11. 11.
    Astrom JA, Timonen J, Myllys M, Fellman J, LeBell J (2007) Random networks of fibres display maximal heterogeneity in the distribution of elastic energy. Eur Phys J E 22: 61–66CrossRefGoogle Scholar
  12. 12.
    Astrom JA, Makinen JP, Alava MJ, Timonen J (2005) Elasticity of Poissonian fiber networks. Phys Rev E 61: 5550–5556CrossRefGoogle Scholar
  13. 13.
    Head DA, Levine AJ, MacKintosh FC (2003) Deformation of cross-linked semiflexible polymer networks. Phys Rev Lett 91: 108102CrossRefGoogle Scholar
  14. 14.
    Heussinger C, Frey E (2006) Stiff polymers, foams, and fiber networks. Phys Rev Lett 96: 017802CrossRefGoogle Scholar
  15. 15.
    Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68: 1259–1273CrossRefGoogle Scholar
  16. 16.
    Tanguy A, Wittmer JP, Leonforte F, Barrat JL (2002) Continuum limit of amorphous elastic bodies: a finite-size study of low-frequency harmonic vibrations. Phys Rev B 66: 174205CrossRefGoogle Scholar
  17. 17.
    Leonforte F, Tanguy A, Wittmer JP, Barrat JL (2004) Continuum limit of amorphous elastic bodies. II. Linear response to a point source force. Phys Rev B 70: 014203CrossRefGoogle Scholar
  18. 18.
    Hatami-Marbini H, Picu RC (2009) An eigenstrain formulation for the prediction of elastic moduli of defective fiber networks. Eur J Mech A/Solids 28: 305–316MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Wilhelm J, Frey E (2003) Elasticity of stiff polymer networks. Phys Rev Lett 91: 108103CrossRefGoogle Scholar
  20. 20.
    Liu J, Koenderink GH, Kasza KE, MacKintosh FC, Weitz DA (2007) Visualizing the strain field in semiflexible polymer networks: strain fluctuations and nonlinear rheology of F-actin gels. Phys Rev Lett 98: 198304CrossRefGoogle Scholar
  21. 21.
    Heussinger C, Schaefer B, Frey E (2007) Nonaffine rubber elasticity for stiff polymer networks. Phys Rev E 76: 031906CrossRefGoogle Scholar
  22. 22.
    Hatami-Marbini H, Picu RC (2008) Scaling of nonaffine deformation in random semiflexible fiber networks. Phys Rev E 77: 062103CrossRefGoogle Scholar
  23. 23.
    Hatami-Marbini H, Picu RC (2009) Effect of fiber orientation on the non-affine deformation of random fiber networks. Acta Mech 205: 77–84MATHCrossRefGoogle Scholar
  24. 24.
    Kallmes O, Corte H (1960) The structure of paper. I. The statistical geometry of an ideal two dimensional fiber network. Tappi J 43: 737–752Google Scholar
  25. 25.
    Hatami-Marbini H, Picu RC (2009) Two-dimensional continuum map of filamentous random networks. Bioengineering Conference, IEEE 35th Annual Northeast, Boston, pp 1–2Google Scholar
  26. 26.
    Falconer KJ (1990) Fractal geometry: mathematical foundations and applications. Wiley, New YorkMATHGoogle Scholar
  27. 27.
    Head DA, Levine AJ, MacKintosh FC (2003) Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys Rev E 68: 061907CrossRefGoogle Scholar
  28. 28.
    Kahle A, Winkler B, Radulescu A, Schreuer J (2004) Small-angle neutron scattering study of volcanic rocks. Eur J Miner 16: 407–417CrossRefGoogle Scholar
  29. 29.
    Majumdar S et al (1999) Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. Med Phys 26: 1330–1340CrossRefGoogle Scholar
  30. 30.
    Parkinson IH, Fazzalari NL (2000) Methodological principles for fractal analysis of trabecular bone. J Microsc 198: 134–142CrossRefGoogle Scholar
  31. 31.
    Ma HS, Roberts AP, Prevost JH, Jullien R, Scherer GW (2000) Mechanical structure–property relationship of aerogels. J Non-Crystal Sol 277: 127–141CrossRefGoogle Scholar
  32. 32.
    Marliere C, Despetis F, Etienne P, Woignier T, Dieudonne P, Phalippou J (2001) Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments. J Non-Crystal Sol 285: 148–153CrossRefGoogle Scholar
  33. 33.
    Maksym GN, Bates JHT (1997) A distributed nonlinear model of lung tissue elasticity. J Appl Physiol 82: 32–41Google Scholar
  34. 34.
    Vrieling EG et al (2004) Ultrasmall, small, and wide angle X-ray scattering analysis of diatom biosilica: interspecific differences in fractal properties. J Mater Chem 14: 1970–1975CrossRefGoogle Scholar
  35. 35.
    Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. North-Holland, AmsterdamMATHGoogle Scholar
  36. 36.
    Soare MA, Picu RC (2008) Boundary value problems defined on stochastic self-similar multiscale geometries. Int J Num Methods Eng 74: 668–696MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Soare MA, Picu RC (2008) Spectral decomposition of random fields defined over the generalized cantor set. Chaos Solitons Fractals 37: 566–573MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Kaye BH (1989) A random walk through fractal dimensions. VCH Publishers, New YorkMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Mechanical Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations