Natural element analysis of the Cahn–Hilliard phase-field model

Abstract

We present a natural element method to treat higher-order spatial derivatives in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear partial differential equation that allows to model phase separation in binary mixtures. Standard classical \({{\mathcal{C}}^0}\)-continuous finite element solutions are not suitable because primal variational formulations of fourth-order operators are well-defined and integrable only if the finite element basis functions are piecewise smooth and globally \({{\mathcal{C}}^1}\)-continuous. To ensure \({{\mathcal{C}}^1}\)-continuity, we develop a natural-element-based spatial discretization scheme. The \({{\mathcal{C}}^1}\)-continuous natural element shape functions are achieved by a transformation of the classical Farin interpolant, which is basically obtained by embedding Sibsons natural element coordinates in a Bernstein–Bézier surface representation of a cubic simplex. For the temporal discretization, we apply the (second-order accurate) trapezoidal time integration scheme supplemented with an adaptively adjustable time step size. Numerical examples are presented to demonstrate the efficiency of the computational algorithm in two dimensions. Both periodic Dirichlet and homogeneous Neumann boundary conditions are applied. Also constant and degenerate mobilities are considered. We demonstrate that the use of \({{\mathcal{C}}^1}\)-continuous natural element shape functions enables the computation of topologically correct solutions on arbitrarily shaped domains.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Barrett JW, Blowey JF, Garcke H (1999) Finite element approximation of cahn hilliard equation with degenerate mobility. SIAM J Numer Anal 37(1): 286–318

    MATH  Article  MathSciNet  Google Scholar 

  2. 2

    Cahn JW (1959) Free energy of a non uniform system II: thermodynamic basis. J Chem Phys 30: 1121–1124

    Article  Google Scholar 

  3. 3

    Cahn JW, Hilliard JE (1958) Free energy of a non uniform system I: interfacial free energy. J Chem Phys 28: 258–267

    Article  Google Scholar 

  4. 4

    Cahn JW, Hilliard JE (1959) Free energy of a nonuniform system III: nucleation in a two component incompressible fluid. J Chem Phys 31: 688–699

    Article  Google Scholar 

  5. 5

    Choo SM, Chung SK (1998) Conservative nonlinear difference scheme for the Cahn–Hilliard equation—part I. Comput Math Appl 36(7): 31–39

    MATH  Article  MathSciNet  Google Scholar 

  6. 6

    Copetti MIM, Elliott CM (1992) Numerical analysis of the Cahn–Hilliard equation with a lograthmic free energy. Numer Math 63(1): 39–65

    MATH  Article  MathSciNet  Google Scholar 

  7. 7

    Cueto E, Sukumar N, Calvo B, Martínez M, Cegon̈ino J, Doblaré M (2003) Overview and recent advances in natural neighbour Galerkin methods. Arch Comput Methods Eng 10(4): 307–384

    MATH  Article  Google Scholar 

  8. 8

    Dolcetta IC, Vita SF, March R (2002) Area preserving curve shortening flows: from phase transitions to image processing. Interfaces Free Boundaries 4(4): 325–343

    MATH  Article  Google Scholar 

  9. 9

    Elliott CM, French DA (1989) A non conforming finite element method for the two-dimensional Cahn–Hilliard equation. SIAM J Numer Anal 26(4): 884–903

    MATH  Article  MathSciNet  Google Scholar 

  10. 10

    Falk F (1992) Cahn–Hilliard theory and irreversible thermodynamics. J Non-Equilibrium Thermodyn 17(1): 53–65

    MATH  Article  Google Scholar 

  11. 11

    Farin G (1985) Curves and surfaces for computer aided geometric design. In: Computer science and scientific computing, 4th edn. Academic Press, London

  12. 12

    Farin G (1990) Surfaces over Dirichlet tesellations. Comput Aided Geom Des 7(1–4): 281–292

    MATH  Article  MathSciNet  Google Scholar 

  13. 13

    Feng WM, Yu P, Hu SY, Liu ZK, Du Q, Chen LQ (2009) A Fourier spectral moving mesh method for the Cahn–Hilliard equation with elasticity. Commun Comput Phys 5: 582–599

    MathSciNet  Google Scholar 

  14. 14

    Fischer P, Mergheim J, Steinmann P (2009) On the C1 continuous discretization of nonlinear gradient elasticity: a comparison of NEM and FEM based on Bernstein–Bézier patches. Int J Numer Methods Eng. doi:10.1002/nme.2802

  15. 15

    Furihata D (2001) A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer Math 87(4): 675–699

    MATH  Article  MathSciNet  Google Scholar 

  16. 16

    Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of Cahn–Hilliard phase field model. Comput Methods Appl Mech Eng 197: 4333–4352

    Article  MathSciNet  Google Scholar 

  17. 17

    González D, Cueto E, Doblaré M (2008) Higher order natural element methods: towards an isogeometric meshless method. Int J Numer Methods Eng 74(13): 1928–1954

    Article  Google Scholar 

  18. 18

    Gurtin ME (1996) Generalized Ginzburg-Landau and Cahn– Hilliard equations based on a microforce balance. Physica D 92: 178–192

    MATH  Article  MathSciNet  Google Scholar 

  19. 19

    He Y, Liu Y (2008) Stability and convergence of the spectral Galerkin method for the Cahn–Hilliard equation. Numer Methods Partial Differ Equ 24(6): 1485–1500

    MATH  Article  MathSciNet  Google Scholar 

  20. 20

    Khain E, Sander LM (2008) Generalized Cahn–Hilliard equation for biological applications. Phys Rev E 77(5): 1–7

    Article  Google Scholar 

  21. 21

    Kuhl E, Schmid DW (2007) Computational modeling of mineral unmixing and growth—an application of the Cahn–Hilliard equation. Comput Mech 39: 439–451

    MATH  Article  Google Scholar 

  22. 22

    Liu C (2008) On the convective Cahn–Hilliard equation with degenerate mobility. J Math Anal Appl 344(1): 124–144

    MATH  Article  MathSciNet  Google Scholar 

  23. 23

    Rajagopal A, Scherer M, Steinmann P, Sukumar N (2009) Smooth conformal α-NEM for gradient elasticity. Int J Struct Changes Solids Mech Appl 1(1): 83–109

    Google Scholar 

  24. 24

    Sethian JA (1996) Theroy, algorithms, and applications of level set methods propagating interfaces. Acta Numerica 5: 309–395

    Article  MathSciNet  Google Scholar 

  25. 25

    Stogner RH, Carey GF, Murray BT (2008) Approximation of Cahn–Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with C1 elements. Int J Numer Methods Eng 76: 636–661

    Article  MathSciNet  Google Scholar 

  26. 26

    Sukumar N, Moran B (1999) C 1 natural neighbour interpolant for partial differential equations. Numer Methods Partial Differ Equ 15(4): 417–447

    MATH  Article  MathSciNet  Google Scholar 

  27. 27

    Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43(5): 839–887

    MATH  Article  MathSciNet  Google Scholar 

  28. 28

    Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ (2001) A front tracking method for the computations of multiphase flow. J Comput Phys 169: 708–759

    MATH  Article  Google Scholar 

  29. 29

    Ubachs RLJM, Schreurs PJG, Geers MGD (2004) A nonlocal diffuse interface model for microstructure evolution in tin-lead solder. J Mech Phys Solids 52(8): 1763–1792

    MATH  Article  Google Scholar 

  30. 30

    Wells GN, Kuhl E, Garikipati K (2006) A discontinious Galerkin method for Cahn–Hilliard equation. J Comput Phys 218: 860–877

    MATH  Article  MathSciNet  Google Scholar 

  31. 31

    Wu XF, Dzenis YA (2008) Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin films under inplanar electric field. Phys Rev E 77(3): 1–10

    Google Scholar 

  32. 32

    Zhou JX, Li ME (2006) Solving phase field equations using a meshless method. Commun Numer Methods Eng 22(11): 1109–1115

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Steinmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rajagopal, A., Fischer, P., Kuhl, E. et al. Natural element analysis of the Cahn–Hilliard phase-field model. Comput Mech 46, 471–493 (2010). https://doi.org/10.1007/s00466-010-0490-4

Download citation

Keywords

  • Cahn–Hilliard equation
  • Fourth-order diffusion
  • Phase separation
  • Higher-order continuity
  • Natural element method