Skip to main content
Log in

Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This manuscript is concerned with a novel, unified finite element approach to fully coupled cardiac electromechanics. The intrinsic coupling arises from both the excitation-induced contraction of cardiac cells and the deformation-induced generation of current due to the opening of ion channels. In contrast to the existing numerical approaches suggested in the literature, which devise staggered algorithms through distinct numerical methods for the respective electrical and mechanical problems, we propose a fully implicit, entirely finite element-based modular approach. To this end, the governing differential equations that are coupled through constitutive equations are recast into the corresponding weak forms through the conventional isoparametric Galerkin method. The resultant non-linear weighted residual terms are then consistently linearized. The system of coupled algebraic equations obtained through discretization is solved monolithically. The put-forward modular algorithmic setting leads to an unconditionally stable and geometrically flexible framework that lays a firm foundation for the extension of constitutive equations towards more complex ionic models of cardiac electrophysiology and the strain energy functions of cardiac mechanics. The performance of the proposed approach is demonstrated through three-dimensional illustrative initial boundary-value problems that include a coupled electromechanical analysis of a biventricular generic heart model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7: 293–301

    Article  Google Scholar 

  2. Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 268: 177–210

    Google Scholar 

  3. Bers DM (2002) Cardiac excitationcontraction coupling. Nature 415: 198–205

    Article  Google Scholar 

  4. Clayton RH, Panfilov AV (2008) A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progr Biophys Mol Biol 96: 19–43

    Article  Google Scholar 

  5. Fenton F, Karma A (1998) Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos Interdiscipl J Nonlinear Sci 8: 20–27

    Article  MATH  Google Scholar 

  6. Fenton FH, Cherry EM, Hastings HM, Evans SJ (2002) Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos Interdiscipl J Nonlinear Sci 12: 852–892

    Article  Google Scholar 

  7. Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve induction. Biophys J 1: 455–466

    Article  Google Scholar 

  8. Göktepe S, Kuhl E (2009) Computational modeling of cardiac electrophysiology: A novel finite element approach. Int J Numer Methods Eng 79: 156–178

    Article  MATH  Google Scholar 

  9. Göktepe S, Wong J, Kuhl E (2009) Atrial and ventricular fibrillation—computational simulation of spiral waves in cardiac tissue. Arch Appl Mech. doi:10.1007/s00419-009-0384-0

    Google Scholar 

  10. Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to excitation and conduction in nerve. J Physiol 117: 500–544

    Google Scholar 

  11. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil Trans Ser A, Math Phys Eng Sci 367(1902):3445–3475. PMID: 19657007

    Article  MATH  MathSciNet  Google Scholar 

  12. Keener JP, Sneyd J (1998) Mathematical physiology. Springer, New York

    MATH  Google Scholar 

  13. Keldermann R, Nash M, Panfilov A (2007) Pacemakers in a reaction–diffusion mechanics system. J Stat Phys 128: 375–392

    Article  MATH  MathSciNet  Google Scholar 

  14. Kerckhoffs R, Healy S, Usyk T, McCulloch A (2006) Computational methods for cardiac electromechanics. Proc IEEE 94: 769–783

    Article  Google Scholar 

  15. Klabunde RE (2005) Cardiovascular physiology concepts. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  16. Kohl P, Hunter P, Noble D (1999) Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Progr Biophys Mol Biol 71: 91–138

    Article  Google Scholar 

  17. Kotikanyadanam M, Göktepe S, Kuhl E (2009) Computational modeling of electrocardiograms: a finite element approach towards cardiac excitation. Commun Numer Methods Eng. doi:10.1002/cnm.1273

    Google Scholar 

  18. Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circ Res 68: 1501–1526

    Google Scholar 

  19. Malmivuo J, Plonsey R (1995) Bioelectromagnetism. Oxford University Press, Oxford

    Google Scholar 

  20. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50: 2061–2070

    Article  Google Scholar 

  21. Nash MP, Hunter PJ (2000) Computational mechanics of the heart from tissue structure to ventricular function. J Elast 61: 113–141

    Article  MATH  MathSciNet  Google Scholar 

  22. Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Progr Biophys Mol Biol 85: 501–522

    Article  Google Scholar 

  23. Nickerson D, Nash M, Nielsen P, Smith N, Hunter P (2006) Computational multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics. IBM J Res Dev 50: 617–630

    Article  Google Scholar 

  24. Nickerson D, Smith N, Hunter P (2005) New developments in a strongly coupled cardiac electromechanical model. Europace 7: S118–127

    Article  Google Scholar 

  25. Niederer SA, Smith NP (2008) An improved numerical method for strong coupling of excitation and contraction models in the heart. Progr Biophys Mol Biol 96: 90–111

    Article  Google Scholar 

  26. Nielsen PM, Grice IJL, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260: H1365–1378

    Google Scholar 

  27. Noble D (1962) A modification of the Hodgkin–Huxley equations applicable to purkinje fibre action and pacemaker potentials. J Physiol 160: 317–352

    Google Scholar 

  28. Opie LH (2004) Heart physiology: from cell to circulation. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  29. Panfilov AV, Keldermann RH, Nash MP (2005) Self-organized pacemakers in a coupled reaction-diffusion-mechanics system. Phys Rev Lett 95:258,104–1–258,014–4. PMID: 16384515

    Article  Google Scholar 

  30. Panfilov AV, Keldermann RH, Nash MP (2007) Drift and breakup of spiral waves in reaction diffusion mechanics systems. Proc Natl Acad Sci 104: 7922–7926

    Article  Google Scholar 

  31. Plank G, Burton RA, Hales P, Bishop M, Mansoori T, Bernabeu MO, Garny A, Prassl AJ, Bollensdorff C, Mason F, Mahmood F, Rodriguez B, Grau V, Schneider JE, Gavaghan D, Kohl P (2009) Generation of histo-anatomically representative models of the individual heart: tools and application. Phil Trans R Soc A 367: 2257–2292

    Article  MATH  Google Scholar 

  32. Pope AJ, Sands GB, Smaill BH, LeGrice IJ (2008) Three-dimensional transmural organization of perimysial collagen in the heart. Am J Physiol Heart Circ Physiol 295(3): H1243–1252

    Article  Google Scholar 

  33. Pullan AJ, Buist ML, Cheng LK (2005) Mathematical modeling the electrical activity of the heart. World Scientific, Singapore

    Google Scholar 

  34. Rogers JM (2002) Wave front fragmentation due to ventricular geometry in a model of the rabbit heart. Chaos (Woodbury, N.Y.) 12:779–787. PMID: 12779606

    Article  Google Scholar 

  35. Rogers JM, McCulloch AD (1994) Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. J Cardiovasc Electrophysiol 5: 496–509

    Article  Google Scholar 

  36. Rohmer D, Sitek A, Gullberg GT (2007) Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest Radiol 42: 777–789

    Article  Google Scholar 

  37. Sachse FB (2004) Computational cardiology: modeling of Anatomy, electrophysiology, and mechanics. Springer, Berlin

    MATH  Google Scholar 

  38. Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84: 1743–1759

    Article  MathSciNet  Google Scholar 

  39. Sermesant M, Rhode K, Sanchez-Ortiz G, Camara O, Andriantsimiavona R, Hegde S, Rueckert D, Lambiase P, Bucknall C, Rosenthal E, Delingette H, Hill D, Ayache N, Razavi R (2005) Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging. Med Image Anal 9: 467–480

    Article  Google Scholar 

  40. Spencer AJM (1971) Theory of invariants. In: Eringen A (eds). Continuum Physics, vol 1. Academic Press, New York

    Google Scholar 

  41. Tusscher KHWJT, Panfilov AV (2008) Modelling of the ventricular conduction system. Progr Biophys Mol Biol 96: 152–170

    Article  Google Scholar 

  42. Usyk TP, LeGrice IJ, McCulloch AD (2002) Computational model of three-dimensional cardiac electromechanics. Comput Vis Sci 4: 249–257

    Article  MATH  Google Scholar 

  43. Yin FC, Chan CC, Judd RM (1996) Compressibility of perfused passive myocardium. Am J Physiol Heart Circ Physiol 271(5): H1864–1870

    Google Scholar 

  44. Zheng Z, Croft J, Giles W, Mensah G (2001) Sudden cardiac death in the United States. Circulation 104: 2158–2163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Göktepe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göktepe, S., Kuhl, E. Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput Mech 45, 227–243 (2010). https://doi.org/10.1007/s00466-009-0434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0434-z

Keywords

Navigation