Skip to main content
Log in

The 2D large deformation analysis using Daubechies wavelet

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ko J, Kurdila AJ, Pilant MS (1995) A class of finite element methods based on orthonormal compactly supported wavelets. Comput Mech 16: 235–244

    Article  MATH  MathSciNet  Google Scholar 

  2. Ma J, Xue J, Yang S, He Z (2003) A study of the construction and application of a Daubechies wavelet-based beam element. Finite Elements Anal design 39: 965–975

    Article  Google Scholar 

  3. Chen X, Yang S, Ma J, He Z (2004) The construction of wavelet finite element and its application. Finite Elements Anal design 40: 541–554

    Article  Google Scholar 

  4. Kurdila AJ, Sun T, Grama P (1995) A fine fractal interpolation functions and wavelet-based finite elements. Comput Mech 17: 169–185

    Article  MATH  MathSciNet  Google Scholar 

  5. Han JG, Ren WX, Huang Y (2006) A spline wavelet finite-element method in structural mechanics. Int J Numer Methods Eng 66: 166–190

    Article  MATH  Google Scholar 

  6. Bertoluzza S, Naldi G (1996) A wavelet collocation method for the numerical solution of partial differential equations. Appl Comput Harmonic Anal 3: 1–9

    Article  MATH  MathSciNet  Google Scholar 

  7. Vasilyev OV, Paolucci S, Sen M (1995) A multilevel wavelet collocation method for solving partial differential equations in a finite domain. J Comput Phys 120: 33–47

    Article  MATH  MathSciNet  Google Scholar 

  8. Vasilyev OV, Samuel P (1996) A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain. J Comput Phys 125: 498–512

    Article  MATH  MathSciNet  Google Scholar 

  9. Vasilyev OV, Kevlahan K-R (2005) An adaptive multilevel wavelet collocation method for elliptic problems. J Comput Phys 206: 412–431

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhou Y-H, Zhou J (2008) A modified wavelet approximation for multi-resolution AWCM in simulating nonlinear vibration of MDOF systems. Comput Methods Appl Mech Eng 197: 1466–1478

    Article  Google Scholar 

  11. Amaratunga K, Williams JR (1994) Wavelet-Galerkin solutions for one dimensional partial differential equation. Int J Numer Methods Eng 37(16): 2703–2716

    Article  MATH  MathSciNet  Google Scholar 

  12. Amaratunga K, Williams JR (1997) Wavelet-Galerkin solutions of boundary value problems. Arch Comput Methods Eng 4: 243–285

    Article  MathSciNet  Google Scholar 

  13. Diaz AR (1999) A wavelet-Galerkin scheme for analysis of large-scale problems on simple domains. Int J Numer Methods Eng 44: 1599–1616

    Article  MATH  Google Scholar 

  14. Juan MR, Gary K (1995) Wavelet-Galerkin discretization of hyperbolic equations. J Comput Phys 122: 118–128

    Article  MATH  MathSciNet  Google Scholar 

  15. Sonia M, Elsa C (1996) Convergence estimates for the wavelet Galerkin method. SIAM J Numer Anal 33(1): 149–161

    Article  MATH  MathSciNet  Google Scholar 

  16. Kim YY, Jang GW (2002) Interpolation wavelet-based multi-scale Galerkin method for thin-walled box beam analysis. Int J Numer Methods Eng 53: 1575–1592

    Article  MATH  MathSciNet  Google Scholar 

  17. Kim JE, Jang GW, Kim YY (2003) Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its application to multiscale topology design optimization. Int J Solids Struct 40: 6473–6496

    Article  MATH  Google Scholar 

  18. Jang GW, Kim JE, Kim YY (2004) Multiscale Galerkin method using interpolation wavelets for two-dimensional elliptic problems in general domains. Int J Numer Methods Eng 59: 225–253

    Article  MATH  MathSciNet  Google Scholar 

  19. Li S, Liu WK (1998) Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput Mech 21: 28–47

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20: 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu WK, Jun S, Li SF (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38: 1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu WK, Chen Y (1996) Generalized multiple scale reproducing kernel particle methods. Comput Methods Appl Mech Eng 139: 91–157

    Article  MATH  Google Scholar 

  23. Liu WK, Chen Y, Chang CT (1996) Advances in multiple scale kernel particle methods. Comput Mech 18: 73–111

    Article  MATH  MathSciNet  Google Scholar 

  24. Liu WK, Jun S (1997) Multiresolution reproducing kernel particle method for computational fluid dynamics. Int J Numer Methods Fluid 24: 1391–1415

    Article  MATH  MathSciNet  Google Scholar 

  25. Chen J, Pan C, Wu C, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139: 195–227

    Article  MATH  MathSciNet  Google Scholar 

  26. Jun S, Liu WK, Belytschko T (1998) Explicit reproducing kernel particle methods for large deformation problems. Int J Numer Methods Eng 41: 137–166

    Article  MATH  Google Scholar 

  27. Liu WK, Jun S (1998) Multi-scale reproducing kernel particle methods for large deformation problems. Int J Numer Methods Eng 4: 1339–1362

    Article  MathSciNet  Google Scholar 

  28. Gu YT, Wang QX, Lam KY (2007) A meshless local Kriging method for large deformation analyses. Comput Methods Appl Mech Eng 196: 1673–1684

    Article  MATH  Google Scholar 

  29. Zhu H, Liu W, Cai Y, Miao Y (2007) A meshless local natural neighbor interpolation method for two-dimension incompressible large deformation analysis. Eng Anal Bound Elem 31: 856–862

    Article  Google Scholar 

  30. Li S, Hao W, Liu WK (2000) Mesh-free simulations of shear banding in large deformation. Int J Solids Struct 377: 185–206

    Google Scholar 

  31. Liu Y, Qin F, Liu Y, Cen Z (2009) A Daubechies wavelet-based method for elastic problems. Eng Anal Bound Elem. doi:10.1016/j.enganaBound.2009.08.004

  32. Wang X, Shao M (2003) Finite element method. Tsinghua University Press, Beijing

    Google Scholar 

  33. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent development. Comput Methods Appl Mech Eng 139: 3–47

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Qin, F., Liu, Y. et al. The 2D large deformation analysis using Daubechies wavelet. Comput Mech 45, 179–187 (2010). https://doi.org/10.1007/s00466-009-0433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0433-0

Keywords

Navigation