Skip to main content
Log in

Finite separation method: an efficient boundary element crack modeling technique

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In computational fracture mechanics, great benefits are obtained from the reduced modeling dimension order and the accurate integral formulation of the boundary element method (BEM). However, the direct representation of co-planar surfaces (i.e., cracks) causes a degeneration of the standard displacement BEM formulation which can only be circumvented with special modeling techniques. Aiming to simplify the generalized application of the BEM to fracture mechanics problems, this paper presents a two-dimensional crack modeling approach. The method uses the direct BEM displacement formulation within a single-domain model to efficiently and precisely calculate any mixed mode crack tip stress intensity factor. Details of the application of the method are presented, while its accuracy and reliability are demonstrated through numerous comparisons with benchmark results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Crack length

e :

Relative error of integration

da :

Crack advance increment

G :

Shear modulus

h, h s, h t :

Element length

J :

Jacobian

K I, K II :

Mode I and II stress intensity factor

m :

Number of integration points

N :

Boundary element shape function

n i :

Vector component of the unit outward normal to Γ

p :

Singularity order

P :

Collocation point

Q :

Field point

r :

Distance between collocation point (P) and field point (Q) or distance from the crack tip

t i :

Traction component in direction i

T ij :

Traction kernel tensor component ij

u i :

Displacement component in direction i

U ij :

Displacement kernel tensor component ij

α :

Relative position of the midside node of a singular sub-element

β I, β II :

Mode I and II shape factor

γ :

Relative position of the midside node of a singular element

Γ:

Boundary of the analysed domain

δ :

Crack face separation

θ :

Angular position from the crack tip

ξ :

Element intrinsic local coordinate

υ :

Poisson’s ratio

ψ :

Crack face mesh refinement ratio (h s /h t )

Ω:

Analysed domain

BEM:

Boundary element method

DDM:

Displacement discontinuity method

DBEM:

Dual boundary element method

FEM:

Finite element method

FSM:

Finite separation method

QPE:

Quarter-point element

SIF:

Stress intensity factor

References

  1. Cotterell B (2002) The past, present, and future of fracture mechanics. Eng Fract Mech 69(5): 533–553

    Article  Google Scholar 

  2. Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook. ASME Press, New York

    Google Scholar 

  3. Liebowitz H, Sandhu JS, Lee JD, Menandro FCM (1995) Computational fracture mechanics: research and application. Eng Fract Mech 50(5–6): 653–670

    Article  Google Scholar 

  4. Aliabadi MH (1997) Boundary element formulations in fracture mechanics. Appl Mech Rev 50(2): 83–96

    Article  Google Scholar 

  5. Cruse TA (1988) Boundary element analysis in computational fracture mechanics. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  6. Becker AA (1992) The boundary element method in engineering. A complete course. McGraw-Hill, London

    Google Scholar 

  7. Mukhopadhyay NK, Maiti SK, Kakodkar A (2000) Review of SIF evaluation and modelling of singularities in BEM. Comput Mech 25(4): 358–375

    Article  MATH  Google Scholar 

  8. Blandford GE, Ingraffea AR, Liggett JA (1981) Two-dimensional stress intensity factor computations using the boundary element method. Int J Numer Methods Eng 17(3): 387–404

    Article  MATH  Google Scholar 

  9. Chang C, Mear ME (1995) A boundary element method for two dimensional linear elastic fracture analysis. Int J Fract 74(3): 219–251

    Google Scholar 

  10. Crouch SL (1976) Solution of plane elasticity problems by the displacement discontinuity method. Int J Numer Methods Eng 10(2): 301–343

    Article  MathSciNet  MATH  Google Scholar 

  11. Portela A, Aliabadi MH, Rooke DP (1992) Dual boundary element method: effective implementation for crack problems. Int J Numer Methods Eng 33(6): 1269–1287

    Article  MATH  Google Scholar 

  12. Aliabadi MH (2002) Boundary element method: application in solids and structures. Wiley, Chichester

    Google Scholar 

  13. Bonnet M (1995) Boundary integral equation methods for solids and fluids. Wiley, Chichester

    Google Scholar 

  14. Saez A, Gallego R, Dominguez J (1995) Hypersingular quarter-point boundary elements for crack problems. Int J Numer Methods Eng 38(10): 1681–1701

    Article  MATH  Google Scholar 

  15. Aliabadi MH, Hall WS, Phemister TG (1985) Taylor expansions for singular kernels in the boundary element method. Int J Numaer Methods Eng 21(12): 2221–2236

    Article  MathSciNet  MATH  Google Scholar 

  16. Watson JO (2003) Boundary elements from 1960 to the present day. Elect J Bound Elem 1(1): 34–46

    Google Scholar 

  17. Pook LP (2007) Metal fatigue: what it is, why it matters. Springer, Dordrecht

    MATH  Google Scholar 

  18. Cruse TA (1972) Numerical evaluation of elastic stress intensity factors by the boundary-integral equation method. In: Swedlow JL (eds) The surface crack: physical problems and computational solutions. ASME, New York, pp 153–170

    Google Scholar 

  19. Lalonde S (2008) Modélisation de la propagation des fissures dans les engrenages par la méthode des éléments de frontières. École de technologie supérieure, Montreal (Master’s Thesis)

  20. Stroud AH, Secrest D (1966) Gaussian quadrature formulas. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  21. Mustoe GGW (1984) Advanced integration schemes over boundary elements and volume cells for two and three dimensional nonlinear analysis, In: Developments in Boundary Element Methods. Elsevier Applied Science Publ, London, pp 213–270

    Google Scholar 

  22. Bu S, Davies TG (1995) Effective evaluation of non-singular integrals in 3D bem. Adv Eng Softw 23(2): 121–128

    Article  Google Scholar 

  23. Gao X-W, Davies TG (2000) Adaptative integration in elasto- plastic boundary element analysis. J Chin Inst Eng 23(3): 349–356

    Google Scholar 

  24. Gao X-W, Davies TG (2001) Boundary element programming in mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  25. Bialecki R, Dallner R, Kuhn G (1993) Minimum distance calculation between a source point and a boundary element. Eng Anal Bound Elem 12(3): 211–218

    Article  MathSciNet  Google Scholar 

  26. Dallner R, Kuhn G (1993) Efficient evaluation of volume integrals in the boundary element method. Comput Methods Appl Mech Eng 109(1–2): 95–109

    Article  MathSciNet  MATH  Google Scholar 

  27. Aliabadi MH, Rooke DP (1992) Numerical fracture mechanics. Computational Mechanics Publications Kluwer Academic, Southampton

    Google Scholar 

  28. Anderson TL (2005) Fracture mechanics: fundamentals and applications. Taylor & Francis, Boca Raton

    MATH  Google Scholar 

  29. Murakami Y (1987) Stress intensity factors handbook. Pergamon, Oxford

    Google Scholar 

  30. Barsoum RS (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng 10(1): 25–37

    Article  MATH  Google Scholar 

  31. Aliabadi MH, Hall WS (1989) Two-dimensional boundary element kernel integration using series expansions. Eng Anal Bound Elem 6(3): 140–143

    Article  Google Scholar 

  32. Huang Q, Cruse TA (1993) Some notes on singular integral techniques in boundary element analysis. Int J Numer Methods Eng 36(15): 2643–2659

    Article  MathSciNet  MATH  Google Scholar 

  33. Cruse TA, Aithal R (1993) Non-singular boundary integral equation implementation. Int J Numer Methods Eng 36(2): 237–254

    Article  Google Scholar 

  34. Mi Y, Aliabadi MH (1996) A Taylor expansion algorithm for integration of 3D near-hypersingular integrals. Commun Numer Methods Eng 12(1): 51–62

    Article  MATH  Google Scholar 

  35. Woo CW, Wang YH, Cheung YK (1989) Mixed mode problems for the cracks emanating from a circular hole in a finite plate. Eng Fract Mech 32(2): 279–288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raynald Guilbault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalonde, S., Guilbault, R. Finite separation method: an efficient boundary element crack modeling technique. Comput Mech 44, 791–807 (2009). https://doi.org/10.1007/s00466-009-0408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0408-1

Keywords

Navigation