Skip to main content
Log in

Multi-scale solid oxide fuel cell materials modeling

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Performance and degradation of fuel cell components are discussed in a multi-scale framework in this paper. Electrochemical reactions in a solid oxide fuel cell occur simultaneously as charge and gas pass through the anode, electrolyte, and cathode to produce electric power. Since fuel cells typically operate at high temperatures for long periods of time, performance degradation due to aging of the fuel cell materials should be examined. This phenomenon is treated in a multi-scale framework by considering how microstructure evolution affects the performance at the macro-scale. Mass and charge conservation equations and electrochemical kinetic equations are solved to predict the overall cell performance using the local properties calculated at the micro-scale. Separately, the microstructures assigned to the macroscopic integration points are evolved via the Cahn–Hilliard equation using an experimentally calibrated kinetic parameter. The effective properties of the evolving microstructure are obtained by homogenization and incorporated in the macro-scale calculation. The proposed model is applied to a solid oxide fuel cell system with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Our model predicts performance degradation after extended hours of operation related to nickel particle coarsening and the resulting decrease in triple phase boundary (TPB) density of the anode material. The investigation of the microstructural effects on TPB density suggests that using Ni and YSZ particles of similar size may retard performance degradation due to anode aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackmann T, de Haart LGJ, Lehnert W, Stolten D (2003) Modeling of mass and heat transport in planar substrate type SOFCs. J Electrochem Soc 150: A783–A789

    Article  Google Scholar 

  2. Akkaya AV (2007) Electrochemical model for performance analysis of a tubular SOFC. Int J Energy Res 31: 79–98

    Article  Google Scholar 

  3. Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27: 1085–1095

    Article  Google Scholar 

  4. Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85: 118–121

    Article  Google Scholar 

  5. Bagger C, Linderoth S, Mogensen M, Hendriksen PV, Kindl B, Primdahl S, Larsen PH, Poulsen FW, Bonanos N, Jùrgensen MJ (1999) Status of Danish solid oxide fuel cell R and D. In: Singhal SC, Dokiya M (eds) Solid oxide fuel cells vi. Proc, vol 99–19. The Electrochemical Society, Pennington, pp 28–35

    Google Scholar 

  6. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  7. Bernardi DM, Mark WV (1991) Mathematical model of a gas diffusion electode bonded to a polymer electrolyte. AiChE J 37: 1151–1163

    Article  Google Scholar 

  8. Bernardi DM, Mark WV (1992) A mathematical model of the solid-polymer–electrolyte fuel cell. J Electrochem Soc 139: 2477–2491

    Article  Google Scholar 

  9. Bhate DN, Kumar A, Bower AF (2000) Diffuse interface model for electromigration and stress voiding. J Appl Phys 87: 1712–1721

    Article  Google Scholar 

  10. Brandon NP, Brett DJ (2006) Engineering porous materials for fuel cell applications. Phil Trans R Soc A 364: 147–159

    Article  Google Scholar 

  11. Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. Chemphyschem 1: 162–193

    Article  Google Scholar 

  12. Cahn JW (1961) On spinodal decomposition. Acta Metall 9: 795–801

    Article  Google Scholar 

  13. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28: 258

    Article  Google Scholar 

  14. Chan SH, Khor KA, Xia ZT (2001) A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J Power Sources 93: 130–140

    Article  Google Scholar 

  15. Chan SH, Xia ZT (2001) Anode micro model of solid oxide fuel cell. J Electrochem Soc 148: A388–A394

    Article  Google Scholar 

  16. Chen LQ (2004) Introduction to the phase-field method of microstructure evolution. In: Raabe D, Roters F, Barlat F, Chen LQ (eds) Continuum scale simulation of engineering materials. Wiley-VCH, Weinheim

    Google Scholar 

  17. Chen LQ (2002) Phase-field models for microstructure evolution. Ann Rev Mater Res 32: 113–140

    Article  Google Scholar 

  18. Chen LQ, Wang YZ (1996) The continuum field approach to modeling microstructural evolution. J Miner Met Mater Soc 48: 13–18

    Google Scholar 

  19. Chen LQ, Yang W (1994) Computer-simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters—the grain-growth kinetics. Phys Rev B 50: 15752–15756

    Article  Google Scholar 

  20. Colpan CO, Dincer I, Hamdullahpur F (2008) A review on macro-level modeling of planar solid oxide fuel cells. Int J Energy Res 32: 336–355

    Article  Google Scholar 

  21. Costamagna P, Costa P, Antonucci V (1998) Micro-modelling of solid oxide fuel cell electrodes. Electrochim Acta 43: 375–394

    Article  Google Scholar 

  22. Cussler EL (1997) Diffusion-mass transfer in fluid systems. Cambridge University Press, New York

    Google Scholar 

  23. De Souza S, Visco SJ, DeJohnge LC (1997) Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte. J Electrochem Soc 144: L35–L37

    Article  Google Scholar 

  24. Epstein N (1989) On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Eng Sci 44: 777–779

    Article  Google Scholar 

  25. Fan D, Chen SP, Chen LQ, Voorhees PW (2002) Phase-field simulation of 2-d ostwald ripening in the high volume fraction regime. Acta Mater 50: 1895–1907

    Article  Google Scholar 

  26. Ghosh S, Lee KH, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38: 2335–2385

    Article  MATH  Google Scholar 

  27. Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes: the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena. International Chemical Series. McGraw-Hill, New York

    Google Scholar 

  28. Hao S, Liu WK, Moran B, Vernerey F, Olson GB (2004) Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Comput Methods Appl Mech Eng 193: 1865–1908

    Article  MATH  Google Scholar 

  29. Haile SM (2003) Fuel cell materials and components. Acta Mater 51: 5981–6000

    Article  Google Scholar 

  30. Hu SY, Chen LQ (2001) Solute segregation and coherent nucleation and growth near a dislocation—a phase-field model integrating defect and phase microstructures. Acta Mater 49: 463–472

    Article  Google Scholar 

  31. Howe JM (1997) Interfaces in materials. Wiley

  32. Hussain MM, Li X, Dincer I (2005) Multi-component mathematical model of solid oxide fuel cell anode. Int J Energy Res 29: 1083–1101

    Article  Google Scholar 

  33. Hwang JJ, Chen CK, Lai DY (2005) Detailed characteristic comparison between planar and MOLB-type SOFCs. J Power Sources 143: 75–83

    Article  Google Scholar 

  34. Ivers-Tiffee E, Wersing W, Schiebl M, Greiner H (1990) Ceramic and metallic components for a planar SOFC. Ber Bunsen-Ges Phys Chem 94: 978–981

    Google Scholar 

  35. Iwata T (1996) Characterization of Ni–YSZ anode degradation for substrate-type solid oxide fuel cells. J Electrochem Soc 143: 1521–1525

    Article  Google Scholar 

  36. Jackson R (1977) Transport in porous catalysts. Elsevier, Amsterdam

    Google Scholar 

  37. Jiang SP, Chan SH (2004) A review of anode materials development in solid oxide fuel cells. J Mater Sci 39: 4405–4439

    Article  Google Scholar 

  38. Joshi AS, Grew KN, Peracchio AA, Chiu WKS (2007) Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode. J Power Sources 164: 631–638

    Article  Google Scholar 

  39. Juhl M, Primdahl S, Manon C, Mogensen M (1996) Performance/structure correlation for composite SOFC cathodes. J Power Sources 61: 173–181

    Article  Google Scholar 

  40. Janardhanan VM, Heuveline V, Deutschmann O (2008) Three-phase boundary length in solid-oxide fuel cells: a mathematical model. J Power Sources 178: 368–372

    Article  Google Scholar 

  41. Juhl M, Primdahl S, Mogensen M (1996) High temperature electrochemistry: ceramics and metals. In: Poulsen FW, Bonanos N, Linderoth S, Mogensen M, Zachau-Christiansen B (eds) Risù National Laboratory, Roskilde, pp 295

  42. Kakaç S, Pramuanjaroenkij A, Zhou XY (2007) A review of numerical modeling of solid oxide fuel cells. Int J Hydrogen Energy 32: 761–786

    Article  Google Scholar 

  43. Khaleel MA, Lin Z, Singh P, Surdoval W, Collin D (2004) A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC®. J Power Sources 130: 136–148

    Article  Google Scholar 

  44. Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro–macro modeling of heterogeneous materials. Comput Mech 27: 37–48

    Article  MATH  Google Scholar 

  45. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87: 045501

    Article  Google Scholar 

  46. Kassner K, Misbah C, Muller J, Kappey J, Kohlert P (2001) Phase-field approach to crystal growth in the presence of strain. J Cryst Growth 25: 289–293

    Article  Google Scholar 

  47. Kassner K, Misbah C, Muller J, Kappey J, Kohlert P (2001) Phase-field modeling of stress-induced instabilities. Phys Rev E 63: 036117

    Article  Google Scholar 

  48. Kobayashi R, Warren JA, Carter WC (2000) Vector-valued phase field model for crystallization and grain boundary formation. Phys D 140: 141–150

    Article  MATH  MathSciNet  Google Scholar 

  49. Krill CE, Chen LQ (2002) Computer simulation of 3-D grain growth using a phase-field model. Acta Mater 50: 3057–3073

    Google Scholar 

  50. Kenjo T, Nishiya M (1992) LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells. Solid State Ionics 57: 295–302

    Article  Google Scholar 

  51. Kilner JA, Steele BCH (1981) Nonstoichiometric oxides. In: Sorensen OT (ed) Academic Press, New York

  52. Khaleel MA, Lin Z, Singh P, Surdoval W, Collin D (2004) A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC. J Power Sources 130: 136–148

    Article  Google Scholar 

  53. Lau KC, Turner CH, Dunlap BI (2009) Kinetic Monte Carlo simulation of O2− incorporation in the yttria stabilized zirconia (YSZ) fuel cell. Chem Phys Lett 471: 326–330

    Article  Google Scholar 

  54. Leo PH, Johnson WC (2001) Spinodal decomposition and coarsening of stressed thin films on compliant substrates. Acta Mater 49: 1771–1787

    Article  Google Scholar 

  55. Leonard F, Desai RC (1998) Alloy decomposition and surface instabilities in thin films. Phys Rev B 58: 8277–8288

    Article  Google Scholar 

  56. Li YL, Hu SY, Liu ZK, Chen LQ (2001) Phase-field model of domain structures in ferroelectric thin films. Appl Phys Lett 78: 3878–3880

    Article  Google Scholar 

  57. Li PW, Schaefer L, Chyu MK (2004) A numerical model coupling the heat and gas species’ transport processes in a tubular SOFC. J Heat Transf 126: 219–229

    Article  Google Scholar 

  58. Li PW, Suzuki K (2004) Numerical modeling and performance study of a tubular SOFC. J Electrochem Soc 151: A548–A557

    Article  Google Scholar 

  59. Li PW, Chyu MK (2003) Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack. J Power Sources 124: 487–498

    Article  Google Scholar 

  60. Liu WK, Karpov E, Zhang S, Park H (2004) An introduction to computational nano mechanics and materials. Comput Methods Appl Mech Eng 193: 1529–1578

    Article  MATH  MathSciNet  Google Scholar 

  61. Liu WK, Karpov E, Park HS (2006) Nano mechanics and materials: theory. Multi-scale methods, and applications. Wiley, New York

    Google Scholar 

  62. Liu WK, McVeigh C (2008) Predictive multi-scale theory for design of heterogeneous materials. Comput Mech 42: 147–170

    Article  MATH  MathSciNet  Google Scholar 

  63. Lu W, Suo Z (2001) Dynamics of nanoscale pattern formation of an epitaxial monolayer. J Mech Phys Solids 49: 1937–1950

    Article  MATH  Google Scholar 

  64. Lusk MT (1999) A phase-field paradigm for grain growth and recrystallization. Proc R Soc Lond Ser A 455: 677–700

    Article  MATH  MathSciNet  Google Scholar 

  65. Lowrie FL, Rawlings RD (2000) Room and high temperature failure mechanisms in solid oxide fuel cell electrolytes. J Eur Ceram Soc 20: 751–760

    Article  Google Scholar 

  66. Marinsek M, Pejovnik S, Macek J (2007) Modelling of electrical properties of Ni-YSZ composites. J Eur Ceram Soc 27: 959–964

    Article  Google Scholar 

  67. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76: 563–588

    Article  Google Scholar 

  68. McVeigh C, Franck V, Liu WK, Moran B, Olson G (2007) An interactive microvoid shear localization mechanism in high strength steels. J Mech Phys Solids 55: 224–225

    Google Scholar 

  69. McVeigh C, Franck V, Liu WK, Brinson C (2006) Multiresolution analysis for material design. Comput Methods Appl Mech Eng 195: 5053–5076

    Article  MATH  Google Scholar 

  70. Mahadevan M, Bradley RM (1999) Simulations and theory of electromigration-induced slit formation in unpassivated single-crystal metal lines. Phys Rev B 59: 11037–11046

    Article  Google Scholar 

  71. Moelwin-Hughes EA (1947) Physical chemistry. Cambridge University Press, Cambridge, p p 329

    Google Scholar 

  72. McVeigh C, Liu WK (2008) Linking microstructure and properties through a predictive multiresolution continuum. Comput Methods Appl Mech Eng 197: 3268–3290

    Article  MATH  MathSciNet  Google Scholar 

  73. McVeigh C, Liu WK (2008) Multiresolution modeling of ductile reinforced brittle composites. J Mech Phys Solids. doi:10.1016/j.jmps.2008.10.015

  74. Mogensen M, Primdahl S, Jørgensen MJ, Bagger C (2000) Composite electrodes in solid oxide fuel cells and similar solid state devices. J Electroceram 5: 141–152

    Article  Google Scholar 

  75. Maiya PS, Blakely JM (1967) Surface self-diffusion and surface energy of nickel. J Appl Phys 38: 698–704

    Article  Google Scholar 

  76. Mori M, Yamamoto T, Itoh H, Inaba H, Tagawa H (1998) Thermal expansion of nickel–zirconia anodes in solid oxide fuel cells during fabrication and operation. J Electrochem Soc 145: 1374–1381

    Article  Google Scholar 

  77. Murray EP, Tsai T, Barnett SA (1998) Oxygen transfer processes in (La, Sr)MnO3/Y2 O3-stabilize ZrO2 cathodes: an impedance spectroscopy study. Solid State Ionics 110: 235–243

    Article  Google Scholar 

  78. Mandin P, Bernay C, Tran-Dac S, Broto A, Abes D, Cassir M (2005) SOFC modelling and numerical simulation of performances. Fuel Cells 1: 71–78

    Google Scholar 

  79. Nicholas JD, Barnett SA (2009) Finite-element modeling of idealized infiltrated composite solid oxide fuel cell cathodes. J Electrochem Soc 156: B458–B464

    Article  Google Scholar 

  80. NFCRC (2007) Fuel cell benefits. http://www.nfcrc.uci.edu

  81. Őstergärd MJL, Clausen C, Bagger C, Mogensen M (1995) Manganite–zirconia composite cathodes for SOFC: influence of structure and composition. Electrochim Acta 40: 1971–1981

    Article  Google Scholar 

  82. O’Hayre R, Cha SW, Colella W, Prinz FB (206)) Fuel cell fundamentals. Wiley, New York

    Google Scholar 

  83. Perry RH, Green DW (1984) Perry’s chemical engineers’ handbook 5.23. McGraw-Hill, New York

    Google Scholar 

  84. Recknagle KP, Williford RE, Chick LA, Rector DR, Khaleel MA (2003) Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. J Power Sources 113: 109–114

    Article  Google Scholar 

  85. Recknagle KP, Williford RE, Chick LA, Rector DR, Khaleel MA (2003) Three-dimentional thermo-fluid electrochemical modeling of planar SOFC stacks. J Power Sources 113: 109–114

    Article  Google Scholar 

  86. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE (2004) Multi-scale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45: 487–506

    Article  Google Scholar 

  87. Srinivasan S, Mosdale R, Stevens P, Yang C (1999) Fuel cells: reaching the era of clear and efficient power generation in the twenty-first century. Ann Rev Energy Environ 24: 281–328

    Article  Google Scholar 

  88. Singhal SC (ed) (1989) Solid oxide fuel cells. In: Proceedings of 1st international symposium. The Electrochemical Society, Pennington

  89. Singhal SC (2002) Solid oxide fuel cells for stationay, mobile and military applications. Solid State Ionics 405: 152–153

    Google Scholar 

  90. Simwonis D, Tietz F, Stőver D (2000) Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics 132: 241–251

    Article  Google Scholar 

  91. Skarmoutsos D, Tietz F, Nikolopoulos P (2001) Structure–property relationships of Ni/YSZ and Ni/(YSZ + TiO2) cermets. Fuel Cells 1: 243–248

    Article  Google Scholar 

  92. Sasaki K, Bohac P, Gauckler LJ (1993) Solid oxide fuel cells III. In: Singhal SC, Iwahara H The Electrochemical Society. Pennington, New Jersey. p 288

  93. Sasaki K, Gauckler LJ (1995) Functional gradient electrode/electrolyte for solid oxide fuel cells: gradient materials design for an electrochemical energy conversion device. In: Proceedings of the international symposium structural functionally graded materials, vol 3, p 651

  94. Suzuki M, Sasaki H, Otoshi S, Kajimura A, Sugiura N, Ippommatsu M (1994) High performance solid oxide fuel cell cathode fabricated by electrochemical vapor deposition. J Electrochem Soc 141: 1928–1931

    Article  Google Scholar 

  95. Sasaki H, Suzuki M, Sogi T, Kajimura A, Yagasaki E (1995) Current status of the fundamental studies on sofc at Osaka Gas. In: Dokiya M, Yamamoto O, Tagawa H, Singhal SC (eds) Solid oxide fuel cells IV. The Electrochemical Society, Pennington, NJ, p 187

    Google Scholar 

  96. Sunde S (1996) Monte Carlo simulations of conductivity of composite electrodes for solid oxide fuel cells. J Electrochem Soc 143: 1123–1132

    Article  Google Scholar 

  97. Sunde S (1996) Monte Carlo simulations of polarization resistance of composite electrodes for solid oxide fuel cells. J Electrochem Soc 143: 1930–1939

    Article  Google Scholar 

  98. Steinbach I, Pezzolla F, Nestler B, Seeßelberg M, Prieler R , Schmitz GJ, Rezende JLL (1996) A phase field concept for multiphase systems. Phys D 94: 135–147

    Article  MATH  Google Scholar 

  99. Smit RJM, Brekelmans WAM, Heijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155: 181–192

    Article  MATH  Google Scholar 

  100. Tsoga A, Naoumidis A, Nikolopoulos P (1996) Wettability and interfacial reactions in the systems Ni/YSZ and Ni/Ti−TiO2/YSZ. Acta Mater 44: 3679–3692

    Article  Google Scholar 

  101. Tanner CW, Fung KZ, Virkar AV (1997) The effect of porous composite electrode structure on solid oxide fuel cell performance I. Theoretical analysis. J Electrochem Soc 144: 21–30

    Article  Google Scholar 

  102. Takano K, Nagata S, Nozaki K, Monma A, Kato T, Kaga Y, Negishi A, Kato K, Inagaki T, Yoshida H, Hosoi K, Hoshino K, Akbay T, Akikusa J (2004) Numerical simulation of a disk-type SOFC for impedance analysis under power generation. J Power Sources 132: 42–51

    Article  Google Scholar 

  103. Tsoga A, Nikolopoulos P (1996) Surface and grain-boundary energies in yttria-stabilized zirconia (YSZ-8 mol%). J Mat Sci 31: 5409–5413

    Article  Google Scholar 

  104. Vaithyanathan V, Wolverton C, Chen LQ (2004) Multiscale modeling of θ′ precipitation in Al–Cu binary alloys. Acta Mater 52: 2973–2987

    Article  Google Scholar 

  105. Vernerey FJ, Liu WK, Moran B, Olson GB (2008) A micromorphic model for the multiple scale failure of heterogeneous materials. J Mech Phys Solids 56: 1320–1347

    Article  MathSciNet  MATH  Google Scholar 

  106. Virkar AV, Chen J, Tanner CW, Kim JW (2000) The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131: 189–198

    Article  Google Scholar 

  107. VanderSteen JDJ, Kenney B, Pharoah JG, Karan K (2004) Mathematical modeling of the transport phenomena and the chemical/electrochemical reactions in solid oxide fuel cells: a review. In: Proceedings of hydrogen and fuel cells, Toronto, Canada

  108. Vernerey FJ, Liu WK, Moran B (2007) Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 55: 2603–2651

    Article  MATH  MathSciNet  Google Scholar 

  109. Wang Y, Liu Y, Ciobanu C, Patton BR (2000) Simulating microstructural evolution and electrical transport in ceramic gas sensors. J Am Ceram Soc 83: 2219–2226

    Article  Google Scholar 

  110. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Appl Phys Lett 78: 2324–2326

    Article  Google Scholar 

  111. Wang YZ, Chen LQ (1999) Simulation of microstructure evolution. In: Kaufmann EN, Abbaschian R, Bocarsly A, Chien CL, Dollimore D (eds). Methods in materials research. Wiley, New York, pp 2a.3.1–23

    Google Scholar 

  112. Wirth BD, Caturla MJ, Diazdela Rubia T, Khraishi T, Zbib H (2001) Mechanical property degradation in irradiated materials: a multi-scale modeling approach. Nuclear Inst. Methods Phys Res B Beam Interact with Mater Atoms 180: 23–31

    Google Scholar 

  113. Wu K, Morral JE, Wang Y (2001) A phase field study of microstructural changes due to the Kirkendall effect in two-phase diffusion couples. Acta Mater 49: 3401–3408

    Article  Google Scholar 

  114. Yakabe H, Ogiwara T, Hishinuma M, Yasuda I (2001) 3-D model calculation for planar SOFC. J Power Sources 102: 144–154

    Article  Google Scholar 

  115. Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45: 2423–2435

    Article  Google Scholar 

  116. Yamamura Y, Kawasaki S, Sakai H (1999) Molecular dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia. Solid State Ionics 126: 181–189

    Article  Google Scholar 

  117. Zhu WZ, Deevi SC (2003) A review on the status of anode materials for solid oxide fuel cells. Mater Sci Eng A 362: 228–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing Kam Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Liu, W.K. & Lee, C. Multi-scale solid oxide fuel cell materials modeling. Comput Mech 44, 683–703 (2009). https://doi.org/10.1007/s00466-009-0402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0402-7

Keywords

Navigation