Skip to main content
Log in

A simple solution strategy for coupled piezo-diffusion in elastic solids

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, a simple solution strategy for the fully coupled problem of the diffusion of a mobile constituent into an elastic solid is proposed. The key features of the proposed solution strategy are a superconvergent strain recovery and a final stress filtering, suitably arranged with a standard recursive staggering scheme. The strategy is devised to overcome some shortcomings arising when solving the problem within the standard finite element framework and can be easily implemented by using existing finite element packages for uncoupled elasticity and diffusion problems. Numerical applications show the effectiveness of the proposed solution strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakroczymski T, Glowacka A, Swiatnicki W (2005) Effect of the hydrogen concentration on the embrittlement of a duplex stainless steel. Corros Sci 47: 1403–1414

    Article  Google Scholar 

  2. Wang M, Akiyama E, Tsuzaki K (2005) Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel. Mater Sci Eng Part A 398: 37–46

    Article  Google Scholar 

  3. Toribio J, Kharin V (2000) A hydrogen diffusion model for applications in fusion nuclear technology. Fusion Eng Des 51–52, 213–218

  4. Woodtli J, Kieselbach R (2000) Damage due to hydrogen embrittlement and stress corrosion cracking. Eng Fail Anal 7: 427–450

    Article  Google Scholar 

  5. Ryumshina TA, Illyashenko SP (1999) Study of stress and strain fields in an infinite plate exposed to hydrogen diffusion. Int J Hydrogen Energy 24: 825–828

    Article  Google Scholar 

  6. ASM Handbook, vol. 5. ASM International, Materials Park (1996)

  7. Marras SI, Ihatiaris IA, Hatzitrifon NK, Sikalidis K, Ainfantis EC (2000) A preliminary study of stress-assisted fluid penetration in ceramic bricks. J Eur Ceram Soc 20: 489–495

    Article  Google Scholar 

  8. Shanati S, Ellis NS, Randall TJ (1995) Coupled diffusion and stress by the finite element method. Appl Math Model 19: 87–94

    Article  MATH  Google Scholar 

  9. Thomas JP, Chopin CE (1999) Modeling of coupled piezo- diffusion in non-porous solids. Int J Eng Sci 37: 1–24

    Article  Google Scholar 

  10. Govindjee S, Simo JC (1993) Coupled stress-diffusion: case II. J Mech Phys Solids 41: 863–887

    Article  MATH  MathSciNet  Google Scholar 

  11. Girrens SP, Smith FW (1987) Finite element analysis of coupled constituent diffusion in thermoelastic solids. Comput Methods Appl Mech Eng 62: 209–223

    Article  MATH  Google Scholar 

  12. Girrens SP, Bennett JG (1991) Thermomechanically driven mass diffusion around elliptical notches. Comput Mech 8: 399–408

    Article  Google Scholar 

  13. Zohdi TI (2002) An adaptive-recursive staggering strategy for simulation multifield coupled processes in microheterogeneous solids. Int J Numer Methods Eng 53: 1511–1532

    Article  MATH  MathSciNet  Google Scholar 

  14. Zohdi TI (2004) Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput Methods Appl Mech Eng 193: 679–699

    Article  MATH  Google Scholar 

  15. Zohdi TI, Wriggers P (2008) Introduction to computational micromechanics. Second Reprinting. Springer, Heidelberg (peer reviewed)

    MATH  Google Scholar 

  16. Garikipati K, Bassman L, Deal M (2001) A lattice-based micromechanical continuum formulation for stress-driven mass transport in polycrystalline solids. J Mech Phys Solids 49: 1209–1237

    Article  MATH  Google Scholar 

  17. Ubertini F (2004) Patch recovery based on complementary energy. Int J Numer Methods Eng 59: 1501–1538

    Article  MATH  Google Scholar 

  18. Prathap G, Naganarayana BP (1995) Consistent thermal stress evaluation in finite elements. Comput Struct 54: 415–426

    Article  MATH  Google Scholar 

  19. de Miranda S, Ubertini F (2001) On the consistency of finite element models in thermoelastic analysis. Comput Methods Appl Mech Eng 190: 2411–2427

    Article  MATH  Google Scholar 

  20. de Miranda S, Ubertini F (2003) Consistency and recovery in electroelasticity. Part I: Standard Finite elements. Comput Methods Appl Mech Eng 192: 831–850

    Article  MATH  Google Scholar 

  21. de Miranda S, Ubertini F (2002) Recovery of consistent stresses for compatible finite elements. Comput Methods Appl Mech Eng 191: 1595–1609

    Article  MATH  Google Scholar 

  22. Gurtin ME (1977) On linear theory of diffusion through an elastic solid. In: Proceedings of the conference on environmental degradation of engineering materials

  23. Weitsman Y (1987) Stress assisted diffusion in elastic and viscoelastic materials. J Mech Phys Solids 35: 73–93

    Article  MATH  Google Scholar 

  24. de Miranda S (2007) A note on thermoelastodiffusion. JP J Solids Struct 1: 1–26

    MathSciNet  MATH  Google Scholar 

  25. Girrens SP, Smith FW (1987) Constituent diffusion in a deformable thermoelastic solid. J Appl Mech 54: 441–446

    Article  MATH  Google Scholar 

  26. Thomas JP (1999) Coupled thermostatic constitutive relations for solid-phase mixtures. Int J Eng Sci 37: 1069–1087

    Article  Google Scholar 

  27. Gachkevich A, Kournyts’kyi T, Terletskii R (2002) Investigation of molecular gas admixture diffusion, heat transfer and stress state in amorphous solid subjected to thermal infrared radiation. Int J Eng Sci 40: 829–857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Molari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Miranda, S., Garikipati, K., Molari, L. et al. A simple solution strategy for coupled piezo-diffusion in elastic solids. Comput Mech 44, 191–203 (2009). https://doi.org/10.1007/s00466-009-0366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0366-7

Keywords

Navigation