Skip to main content
Log in

A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a variational multiscale residual-based stabilized finite element method for the incompressible Navier–Stokes equations. Structure of the stabilization terms is derived based on the two level scale separation furnished by the variational multiscale framework. A significant feature of the new method is that the fine scales are solved in a direct nonlinear fashion, and a definition of the stabilization tensor τ is derived via the solution of the fine-scale problem. A computationally economic procedure is proposed to evaluate the advection part of the stabilization tensor. The new method circumvents the Babuska–Brezzi (inf–sup) condition and yields a stable formulation for high Reynolds number flows. A family of equal-order pressure-velocity elements comprising 4-and 10-node tetrahedral elements and 8- and 27-node hexahedral elements is developed. Convergence rates are reported and accuracy properties of the method are presented via the lid-driven cavity flow problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masud A (2004) Preface to the special issue on stabilized and multiscale finite element methods. Comput Methods Appl Mech Eng 193: iii–iv

    Article  MathSciNet  Google Scholar 

  2. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MATH  MathSciNet  Google Scholar 

  3. Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45: 217–284

    Article  MATH  MathSciNet  Google Scholar 

  4. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99

    Article  MATH  MathSciNet  Google Scholar 

  5. Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective diffusive equations. Comput Methods Appl Mech Eng 73(2): 173–189

    Article  MATH  MathSciNet  Google Scholar 

  6. Franca LP, Frey SL (1992) Stabilized finite element methods: II The incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 99: 209–233

    Article  MATH  MathSciNet  Google Scholar 

  7. Franca LP, Frey SL, Hughes TJR (1992) Stabilized finite element methods: I. Application to the advective–diffusive model. Comput Methods Appl Mech Eng 95(2): 253–276

    Article  MATH  MathSciNet  Google Scholar 

  8. Hauke G, Hughes TJR (1994) A unified approach to compressible and incompressible flows. Comput Methods Appl Mech Eng 113: 389–395

    Article  MATH  MathSciNet  Google Scholar 

  9. Masud A, Hughes TJR (1997) A space-time Galerkin/least-squares finite element formulation of the Navier–Stokes equations for moving domain problems. Comput Methods Appl Mech Eng 146: 91–126

    Article  MATH  MathSciNet  Google Scholar 

  10. Jansen KE, Collis SS, Whiting C, Shakib F (1999) A better consistency for low-order stabilized finite elements methods. Comput Methods Appl Mech Eng 174(1–2): 154–170

    Article  MathSciNet  Google Scholar 

  11. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401

    Article  MATH  Google Scholar 

  12. Hughes TJR, Feijoo GR, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1–2): 3–24

    Article  MATH  MathSciNet  Google Scholar 

  13. Brezzi F, Bristeau MO, Franca LP, Mallet M, Roge G (1992) A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput Methods Appl Mech Eng 96(1): 117–129

    Article  MATH  MathSciNet  Google Scholar 

  14. Baiocchi C, Brezzi F, Franca LP (1993) Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S). Comput Methods Appl Mech Eng 105: 125–141

    Article  MATH  MathSciNet  Google Scholar 

  15. Brezzi F, Franca LP, Hughes TJR, Russo A (1997) b = ∫ g. Comput Methods Appl Mech Eng 145(3–4): 329–339

    Article  MATH  MathSciNet  Google Scholar 

  16. Brezzi F, Marini D, Russo A (1998) Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems. Comput Methods Appl Mech Eng 166: 51–63

    Article  MATH  MathSciNet  Google Scholar 

  17. Brezzi F, Houston P, Marini D, Suli E (2000) Modeling subgrid viscosity for advection diffusion problems. Comput Methods Appl Mech Eng 190: 1601–1610

    Article  MATH  Google Scholar 

  18. Franca LP, Farhat C (1995) Bubble functions prompt unusual stabilized finite element methods. Comput Methods Appl Mech Eng 123(1–4): 299–308

    Article  MATH  MathSciNet  Google Scholar 

  19. Franca LP, Farhat C, Lesoinne M, Russo A (1998) Unusual stabilized finite element methods and residual free bubbles. Int J Numer Methods Fluids 27(2): 159–168

    Article  MATH  MathSciNet  Google Scholar 

  20. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—The Deforming-Spatial-Domain/Space-Time Procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351

    Article  MATH  MathSciNet  Google Scholar 

  21. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—The Deforming-Spatial- Domain/Space-Time Procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371

    Article  MATH  MathSciNet  Google Scholar 

  22. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order- interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242

    Article  MATH  Google Scholar 

  23. Franca LP, Hauke G, Masud A (2006) Revisiting stabilized finite element methods for the advective-diffusive equation. Comput Methods Appl Mech Eng 195: 1560–1572

    Article  MATH  MathSciNet  Google Scholar 

  24. Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Eng 182(3–4): 355–370

    Article  MATH  Google Scholar 

  25. Franca LP, Nesliturk A (2001) On a two-level finite element method for the incompressible Navier–Stokes equations. Int J Numer Methods Eng 52: 433–453

    Article  MATH  Google Scholar 

  26. Farhat C, Harari I, Hetmaniuk U (2003) The discontinuous enrichment method for multiscale analysis. Comput Methods Appl Mech Eng 192: 3195–3209

    Article  MATH  MathSciNet  Google Scholar 

  27. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575

    Article  MATH  MathSciNet  Google Scholar 

  28. Calo VM (2004) Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition. PhD Thesis, Department of Civil and Environmental Engineering, Stanford University

  29. Codina R, Soto O (2004) Approximation of the incompressible Navier–Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput Methods Appl Mech Eng 193: 1403–1419

    Article  MATH  MathSciNet  Google Scholar 

  30. Gravemeier V, Wall WA, Ramm E (2004) A three-level finite element method for the instationary incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 193: 1323–1366

    Article  MATH  MathSciNet  Google Scholar 

  31. Masud A, Khurram RA (2004) A multiscale/stabilized finite element method for the advection-diffusion equation. Comput Methods Appl Mech Eng 193: 1997–2018

    Article  MATH  Google Scholar 

  32. Elias RN, Martins MAD, Coutinho ALGA (2006) Parallel edge-based solution of viscoplastic flows with the SUPG/PSPG formulation. Comput Mech 38: 365–381

    Article  Google Scholar 

  33. Masud A, Khurram RA (2006) A multiscale finite element method for the incompressible Navier–Stokes equation. Comput Methods Appl Mech Eng 195: 1750–1777

    Article  MATH  MathSciNet  Google Scholar 

  34. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206

    Article  MathSciNet  Google Scholar 

  35. Quarteroni A, Valli A (1994) Numerical approximation of partial differential equations. Springer, Berlin

    MATH  Google Scholar 

  36. Masud A, Franca LP (2008) A hierarchical multiscale framework for problems with multiscale source terms. Comput Methods Appl Mech Eng 197: 2692–2700

    Article  MathSciNet  Google Scholar 

  37. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MathSciNet  Google Scholar 

  38. Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193: 1909–1922

    Article  MATH  Google Scholar 

  39. Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59: 307–325

    Article  MATH  Google Scholar 

  40. Ethier CR, Steinman DA (1994) Exact fully 3D Navier–Stokes solutions for benchmarking. Int J Numer Methods Fluids 19: 369–375

    Article  MATH  Google Scholar 

  41. Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48: 387–411

    Article  MATH  Google Scholar 

  42. Jiang BN, Lin TL, Povinelli LA (1994) Large-scale computation of incompressible viscous flow by least-squares finite element method. Comput Methods Appl Mech Eng 114: 213–231

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Masud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masud, A., Calderer, R. A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations. Comput Mech 44, 145–160 (2009). https://doi.org/10.1007/s00466-008-0362-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0362-3

Keywords

Navigation