Abstract
In this paper a method for the generation of three-dimensional periodic meshes for the numerical simulation of polycrystalline aggregates is presented. The mesh construction is based on Voronoi and Hardcore Voronoi tessellations of random point seeds. Special emphasis is paid on the periodicity of the mesh topologies which leads to favorable numerical properties for the determination of effective properties using unit cells. The mesh generation algorithm is able to produce high quality meshes at low computational costs. Based on unit cell simulations with different but statistically equivalent microstructures, the effective linear elastic properties of polycrystals consisting of grains with a cubic symmetry are determined. The numerical results are compared with first-, third- and fifth-order bounds and experimental data. Numerical simulations show the efficiency of the proposed homogenization technique.
Similar content being viewed by others
References
Adams B, Olson T (1998) The mesostructure—properties linkage in polycrystals. Progress Mater Sci 43: 1–88
Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv 23(3): 345–405
Bangerth W, Hartmann R, Kanschat G (2007) Deal. II. A general-purpose object-oriented finite element library. ACM Trans Math Softw 33(4):24. http://doi.acm.org/10.1145/1268776.1268779
Bangerth W, Hartmann R, Kanschat G. Deal. II Differential equations analysis library, technical reference. URL:http://www.dealii.org
Barbe F, Decker L, Jeulin D, Cailletaud G (2001a) Intergranular and intragranular behavior of polycrystalline aggregates Part. 1: F.E. Model. Int J Plast 17: 513–536
Barbe F, Forest S, Cailletaud G (2001b) Intergranular and intragranular behavior of polycrystalline aggregates. Part 2: Results. Int J Plast 17: 537–563
Barber C, Dobkin D, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4): 469–483
Beran M, Mason T, Adams B, Olsen T (1996) Bounding elastic constants of an orthotropic polycrystal using measurements of the microstructure. J Mech Phys Solids 44(9): 1543–1563
Bhandari Y, Sarkar S, Groeber M, Uchic M, Dimiduk D, Ghosh S (2007) 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comput Mater Sci 41: 222–235
Böhlke T, Jöchen K, Kraft O, Löhe D, Schulze V (2008) Elastic Properties of Polycrystalline Microcomponents. Preprint series of the Chair of Continuum Mechanics, University Karlsruhe (TH) (No. 2008-1)
Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Comput Mater Sci 27: 351–374
Dederichs P, Zeller R (1973) Variational treatment of the elastic constants of disordered materials. Zeitschrift Phys 259: 103–116
Diard O, Leclercq S, Rousselier G, Cailletaud G (2005) Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int J Plast 21: 691–722
Ferrié E, Buffière J-Y, Ludwig W, Gravouil A, Lyndon E (2006) Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Mater 54(4): 1111–1122
Gervois A, Troadec J, Lemaitre J (1992) Universal properties of Voronoi tessellations of hard discs. J Phys A 25: 6169–6177
Groeber M, Haley B, Uchic M, Dimiduk D, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructure using a FIB-SEM. Mater Characterization 57: 259–273
Groeber M, Ghosh S, Uchic M, Dimiduk D (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1. Statistical characterization. Acta Mater 56: 1257–1273
Groeber M, Ghosh S, Uchic M, Dimiduk D (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation. Acta Materialia 56: 1274–1287
Kanit T (2003) Notation de Volume Elementaire Répres entatif pour les Matéri aux Hétero gènes: Approche Statistique et Numéri que. PhD Thesis, Centre des Matéri aux P.M. FOURT de l’Ecole des Mines de Paris, Evry Cedex, May 2003
Kröner E (1977) Bounds for the effective elastic properties of disordered materials. J Mech Phys Solids 25: 134–155
Kumar S, Kurtz S (1994) Simulation of material microstructure using a 3d Voronoi tesselation: Calculation of effective thermal expansion coefficient of polycrystalline materials. Acta Metallurgica et Materialia 42(12): 3917–3927
Kumar S, Kurtz S, Agarwala V (1996) Micro-stresss distribution within polycrystalline aggregate. Acta Mech 114: 203–216
Lauridson E, Schmidt S, Nielsen S, Margulies L, Poulsen H, Jensen D (2006) Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy. Scripta Mater 55: 51–56
Lautensack C (2007) Random Laguerre Tesselations. PhD Thesis, Universität Karlsruhe (TH)
Lautensack C, Sych T (2006) 3d image analysis of open foams using random tesselations. Image Anal Stereol 25: 87–93
Lautensack C, Gietzsch M, Godehardt M, Schladitz K (2008) Modelling a ceramic foam using locally adaptable morphology. J Microsc (accepted)
Murnaghan F (1962) The unitary and rotation groups. Lecture on applied mathematics. Spartan Books, Washington
Nygards M (2003) Number of grains necessary to homogenize elastic materials with cubic symmetry. Mech Mater 35: 1049–1057
Ostoja-Starzewski M (2006) Material spatial randomness: From statistical to representative volume element. Probab Eng Mech 21: 112–132
Paufler P, Schulze G (1978) Physikalische Grundlagen mechanischer Festkoerpereigenschaften. Vieweg, Braunschweig
Rychlewski J (1995) Unconventional approach to linear elasticity. Arch Mech 47(2): 149–171
Shewchuk J (1996) Engineering a 2D quality mesh generator and delaunay triangulator. In: Lin M, Manocha D (eds) Applied computational geometry: towards geometric engineering. Springer, Heidelberg, pp 203–222
Si H, Gaertner K (2005) Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations. In: Proceedings of the 14th international meshing roundtable, pp 147–163, Sept. 2005
Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. The MIT Press, Cambridge
Swaminathan S, Ghosh S, Pagano J (2006) Statistically equivalent representative volume element for unidirectional composite microstructures: Part I—without damage. J Composite Mater 40(7): 583–604
Williams W, Smith C (1952) A study of grain shape in an aluminium alloy and other applications of stereoscopic microradiology. Trans Am Inst Mining Eng 194: 755–765
Zhao Y, Tryon R (2004) Automatic 3-d simulation and micro-stress distribution of polycrystalline metallic materials. Comp Methods Appl Mech Eng 193: 3919–3934
Zhodi T, Wriggers P (2005) Introduction to computational micromechanics. Springer, Heidelberg
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fritzen, F., Böhlke, T. & Schnack, E. Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Comput Mech 43, 701–713 (2009). https://doi.org/10.1007/s00466-008-0339-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00466-008-0339-2