Skip to main content
Log in

Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper a method for the generation of three-dimensional periodic meshes for the numerical simulation of polycrystalline aggregates is presented. The mesh construction is based on Voronoi and Hardcore Voronoi tessellations of random point seeds. Special emphasis is paid on the periodicity of the mesh topologies which leads to favorable numerical properties for the determination of effective properties using unit cells. The mesh generation algorithm is able to produce high quality meshes at low computational costs. Based on unit cell simulations with different but statistically equivalent microstructures, the effective linear elastic properties of polycrystals consisting of grains with a cubic symmetry are determined. The numerical results are compared with first-, third- and fifth-order bounds and experimental data. Numerical simulations show the efficiency of the proposed homogenization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams B, Olson T (1998) The mesostructure—properties linkage in polycrystals. Progress Mater Sci 43: 1–88

    Article  Google Scholar 

  2. Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv 23(3): 345–405

    Article  Google Scholar 

  3. Bangerth W, Hartmann R, Kanschat G (2007) Deal. II. A general-purpose object-oriented finite element library. ACM Trans Math Softw 33(4):24. http://doi.acm.org/10.1145/1268776.1268779

    Google Scholar 

  4. Bangerth W, Hartmann R, Kanschat G. Deal. II Differential equations analysis library, technical reference. URL:http://www.dealii.org

  5. Barbe F, Decker L, Jeulin D, Cailletaud G (2001a) Intergranular and intragranular behavior of polycrystalline aggregates Part. 1: F.E. Model. Int J Plast 17: 513–536

    Article  MATH  Google Scholar 

  6. Barbe F, Forest S, Cailletaud G (2001b) Intergranular and intragranular behavior of polycrystalline aggregates. Part 2: Results. Int J Plast 17: 537–563

    Article  MATH  Google Scholar 

  7. Barber C, Dobkin D, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4): 469–483

    Article  MATH  MathSciNet  Google Scholar 

  8. Beran M, Mason T, Adams B, Olsen T (1996) Bounding elastic constants of an orthotropic polycrystal using measurements of the microstructure. J Mech Phys Solids 44(9): 1543–1563

    Article  Google Scholar 

  9. Bhandari Y, Sarkar S, Groeber M, Uchic M, Dimiduk D, Ghosh S (2007) 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comput Mater Sci 41: 222–235

    Article  Google Scholar 

  10. Böhlke T, Jöchen K, Kraft O, Löhe D, Schulze V (2008) Elastic Properties of Polycrystalline Microcomponents. Preprint series of the Chair of Continuum Mechanics, University Karlsruhe (TH) (No. 2008-1)

  11. Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Comput Mater Sci 27: 351–374

    Article  Google Scholar 

  12. Dederichs P, Zeller R (1973) Variational treatment of the elastic constants of disordered materials. Zeitschrift Phys 259: 103–116

    Article  Google Scholar 

  13. Diard O, Leclercq S, Rousselier G, Cailletaud G (2005) Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int J Plast 21: 691–722

    Article  MATH  Google Scholar 

  14. Ferrié E, Buffière J-Y, Ludwig W, Gravouil A, Lyndon E (2006) Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Mater 54(4): 1111–1122

    Article  Google Scholar 

  15. Gervois A, Troadec J, Lemaitre J (1992) Universal properties of Voronoi tessellations of hard discs. J Phys A 25: 6169–6177

    Article  Google Scholar 

  16. Groeber M, Haley B, Uchic M, Dimiduk D, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructure using a FIB-SEM. Mater Characterization 57: 259–273

    Article  Google Scholar 

  17. Groeber M, Ghosh S, Uchic M, Dimiduk D (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1. Statistical characterization. Acta Mater 56: 1257–1273

    Article  Google Scholar 

  18. Groeber M, Ghosh S, Uchic M, Dimiduk D (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation. Acta Materialia 56: 1274–1287

    Article  Google Scholar 

  19. Kanit T (2003) Notation de Volume Elementaire Répres entatif pour les Matéri aux Hétero gènes: Approche Statistique et Numéri que. PhD Thesis, Centre des Matéri aux P.M. FOURT de l’Ecole des Mines de Paris, Evry Cedex, May 2003

  20. Kröner E (1977) Bounds for the effective elastic properties of disordered materials. J Mech Phys Solids 25: 134–155

    Google Scholar 

  21. Kumar S, Kurtz S (1994) Simulation of material microstructure using a 3d Voronoi tesselation: Calculation of effective thermal expansion coefficient of polycrystalline materials. Acta Metallurgica et Materialia 42(12): 3917–3927

    Article  Google Scholar 

  22. Kumar S, Kurtz S, Agarwala V (1996) Micro-stresss distribution within polycrystalline aggregate. Acta Mech 114: 203–216

    Article  MATH  Google Scholar 

  23. Lauridson E, Schmidt S, Nielsen S, Margulies L, Poulsen H, Jensen D (2006) Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy. Scripta Mater 55: 51–56

    Article  Google Scholar 

  24. Lautensack C (2007) Random Laguerre Tesselations. PhD Thesis, Universität Karlsruhe (TH)

  25. Lautensack C, Sych T (2006) 3d image analysis of open foams using random tesselations. Image Anal Stereol 25: 87–93

    Google Scholar 

  26. Lautensack C, Gietzsch M, Godehardt M, Schladitz K (2008) Modelling a ceramic foam using locally adaptable morphology. J Microsc (accepted)

  27. Murnaghan F (1962) The unitary and rotation groups. Lecture on applied mathematics. Spartan Books, Washington

    Google Scholar 

  28. Nygards M (2003) Number of grains necessary to homogenize elastic materials with cubic symmetry. Mech Mater 35: 1049–1057

    Article  Google Scholar 

  29. Ostoja-Starzewski M (2006) Material spatial randomness: From statistical to representative volume element. Probab Eng Mech 21: 112–132

    Article  Google Scholar 

  30. Paufler P, Schulze G (1978) Physikalische Grundlagen mechanischer Festkoerpereigenschaften. Vieweg, Braunschweig

    Google Scholar 

  31. Rychlewski J (1995) Unconventional approach to linear elasticity. Arch Mech 47(2): 149–171

    MATH  MathSciNet  Google Scholar 

  32. Shewchuk J (1996) Engineering a 2D quality mesh generator and delaunay triangulator. In: Lin M, Manocha D (eds) Applied computational geometry: towards geometric engineering. Springer, Heidelberg, pp 203–222

    Chapter  Google Scholar 

  33. Si H, Gaertner K (2005) Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations. In: Proceedings of the 14th international meshing roundtable, pp 147–163, Sept. 2005

  34. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. The MIT Press, Cambridge

  35. Swaminathan S, Ghosh S, Pagano J (2006) Statistically equivalent representative volume element for unidirectional composite microstructures: Part I—without damage. J Composite Mater 40(7): 583–604

    Article  Google Scholar 

  36. Williams W, Smith C (1952) A study of grain shape in an aluminium alloy and other applications of stereoscopic microradiology. Trans Am Inst Mining Eng 194: 755–765

    Google Scholar 

  37. Zhao Y, Tryon R (2004) Automatic 3-d simulation and micro-stress distribution of polycrystalline metallic materials. Comp Methods Appl Mech Eng 193: 3919–3934

    Article  MATH  Google Scholar 

  38. Zhodi T, Wriggers P (2005) Introduction to computational micromechanics. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fritzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritzen, F., Böhlke, T. & Schnack, E. Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Comput Mech 43, 701–713 (2009). https://doi.org/10.1007/s00466-008-0339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0339-2

Keywords

Navigation