Skip to main content
Log in

A linearly conforming radial point interpolation method (LC-RPIM) for shells

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a linearly conforming radial point interpolation method (LC-RPIM) is presented for the linear analysis of shells. The first order shear deformation shell theory is adopted, and the radial and polynomial basis functions are employed to construct the shape functions. A strain smoothing stabilization technique for nodal integration is used to restore the conformability and to improve the accuracy. Convergence studies are performed in terms of the number of nodes and the nodal distribution patterns, including the regular distribution and the irregular distribution. Comparisons are made with the existing results available in the literature and good agreements are obtained. The numerical examples have demonstrated that the present approach provides very stable and accurate results and effectively eliminates the membrane locking and shear locking in shell problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput Methods Appl Mech Eng 26: 331–362

    Article  MATH  MathSciNet  Google Scholar 

  2. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: Part II. Two-dimensional shells. Comput Methods Appl Mech Eng 27: 167–181

    Article  MATH  MathSciNet  Google Scholar 

  3. Belytschko T, Stolarski H (1985) Stress projection for membrane and shear locking in shell elements. Comput Methods Appl Mech Eng 51: 221–258

    Article  MATH  MathSciNet  Google Scholar 

  4. Liu WK, Law ES, Lam D, Belytschko T (1986) Resultant-stress degenerated-shell element. Comput Methods Appl Mech Eng 55: 259–300

    Article  MATH  Google Scholar 

  5. Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrical exact shell model. Part II: The linear theory. Comput Methods Appl Mech Eng 73: 53–92

    Article  MATH  MathSciNet  Google Scholar 

  6. Crisfield M (1986) Finite elements on solution procedure s for structural analysis, I. Linear analysis. Pineridge Press, Swansea

    Google Scholar 

  7. Reddy JN, Liu FL (1985) A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci 23: 319–330

    Article  MATH  Google Scholar 

  8. Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33: 3057–3080

    Article  MATH  Google Scholar 

  9. Noguchi H, Kawashima T, Miyamura T (2000) Element free analyses of shell and spatial structures. Int J Numer Methods Eng 47: 1215–1240

    Article  MATH  Google Scholar 

  10. Li S, Hao W, Liu WK (2000) Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech 25: 102–116

    Article  MATH  Google Scholar 

  11. Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method. Part I: Theoretical formulation. Comput Methods Appl Mech Eng 193: 933–951

    Article  MATH  MathSciNet  Google Scholar 

  12. Li S, Lu H, Han W, Liu WK, Simkins DC Jr. (2004) Reproducing kernel element method. Part II: Globally conforming I m/C n hierarchies. Comput Methods Appl Mech Eng 193: 953–987

    Article  MATH  MathSciNet  Google Scholar 

  13. Simkins DC Jr., Li S, Lu H, Liu WK (2004) Reproducing kernel element method. Part IV: Globally compatible C n (n ≥ triangular hierarchy. Comput Methods Appl Mech Eng 193: 1013–1034

    Article  MATH  MathSciNet  Google Scholar 

  14. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139: 49–74

    Article  MATH  MathSciNet  Google Scholar 

  15. Bonet J, Kulasegaram S (1999) Correction and stabilization of smoothed particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47: 1189–1214

    Article  Google Scholar 

  16. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50: 435–466

    Article  MATH  Google Scholar 

  17. Wang DD, Chen JS (2004) Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Comput Methods Appl Mech Eng 193: 1065–1083

    Article  MATH  Google Scholar 

  18. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 0: 937–951

    Article  Google Scholar 

  19. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54: 1623–1648

    Article  MATH  Google Scholar 

  20. Liu GR, Dai KY, Lim KM, Gu YT (2003) A radial point interpolation method for simulation of two-dimensional piezoelectric structures. Smart Mater Struct 12: 171–180

    Article  Google Scholar 

  21. Zhang GY, Liu GR, Wang YY, Huang HT, Zhong ZH, Li GY, Han X (2005) A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. Int J Numer Methods Eng (revised)

  22. Liu GR, Li Y, Dai KY, Luan MT, Xue W (2006) A linearly conforming RPIM for solids mechanics problems. Int J Comput Methods (in press)

  23. Reddy JN, Arciniega RA (2004) Shear deformation plate and shell theories: from Stavsky to present. Mech Adv Mater Struct 11: 535–582

    Article  Google Scholar 

  24. Reddy JN, Miravete A (1995) Practical analysis of composite laminates. CRC Press, Boca Raton

    Google Scholar 

  25. Koziey BL, Mirza FA (1997) Consistent thick shell element. Comput Struct 65: 531–549

    Article  MATH  Google Scholar 

  26. Liu WK, Hu Y, Belytschko T (1994) Multiple quadrature underintegrated finite elements. Int J Numer Methods Eng 37: 3263–3289

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu WK, Guo Y, Tang S, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastic analysis. Comput Methods Appl Mech Eng 154: 69–132

    Article  MATH  MathSciNet  Google Scholar 

  28. Brebbia, C, Connor J (1969) Geometrically nonlinear finite element analysis. J Eng Mech 463–483

  29. Palazotto AN, Dennis ST (1992) Nonlinear analysis of shell structures. AIAA, Washington DC

    MATH  Google Scholar 

  30. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis. 2nd edn. CRC press, West Palm Beach

    MATH  Google Scholar 

  31. Varadan TK, Bhaskar K (1991) Bending of laminated orthotropic cylindrical shells-An elastic approach. Compos Struct 17: 141–156

    Article  Google Scholar 

  32. Vlasov VZ (1964) General theory of shells and its applications in engineering (translation of Obshchaya teoriya obolocheck I yeye prilozheniya v tekhnike) NASA TT F-99, National Aeronautics and Space Administration, Washington, DC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Liu, G.R., Dai, K.Y. et al. A linearly conforming radial point interpolation method (LC-RPIM) for shells. Comput Mech 43, 403–413 (2009). https://doi.org/10.1007/s00466-008-0313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0313-z

Keywords

Navigation