Skip to main content
Log in

Numerical investigation of crack growth in concrete subjected to compression by the generalized beam lattice model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The beam lattice-type models, such as the Euler–Bernoulli (or Timoshenko) beam lattice and the generalized beam (GB) lattice, have been proved very effective in simulating failure processes in concrete and rock due to its simplicity and easy implementation. However, these existing lattice models only take into account tensile failures, so it may be not applicable to simulation of failure behaviors under compressive states. The main aim in this paper is to incorporate Mohr–Coulomb failure criterion, which is widely used in many kinds of materials, into the GB lattice procedure. The improved GB lattice procedure has the capability of modeling both element failures and contact/separation of cracked elements. The numerical examples show its effectiveness in simulating compressive failures. Furthermore, the influences of lateral confinement, friction angle, stiffness of loading platen, inclusion of aggregates on failure processes are respectively analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazant ZP, Tabbara MR, Kazemi MT and Cabot GR (1990). Random particle model for fracture of aggregate or fiber composites. J Eng Mech 116(8): 1686–1705

    Article  Google Scholar 

  2. Bolander JE Jr, Shiraishi T, Isogawa Y (1996). An adaptive procedure for fracture simulation in extensive lattice networks. Eng Fract Mech 54(3): 325–334

    Article  Google Scholar 

  3. Bolander JE Jr, Saito S (1998). Fracture analysis using spring network with random geometry. Eng Fract Mech 61(5–6): 569–591

    Article  Google Scholar 

  4. Chang CS and Gao J (1996). Kinematics and static hypothesis for constitutive modeling of granulates considering particle rotations. Acta Mech 115: 213–229

    Article  MATH  Google Scholar 

  5. Chang CS, Wang TK, Sluys LJ, van Mier JGM (2002). Fracture modeling using a micro-structural mechanics approach—I. Theory and formulation. Eng Fract Mech 69: 1941–1958

    Article  Google Scholar 

  6. Chang QT (1994) Nonlinear dynamic discontinuous deformation analysis with finite element meshed block systems. PhD Thesis, University of California, Berkeley

  7. Chetouane B, Dubois F, Vinches M and Bohatier C (2005). NSCD discrete element method for modeling masonry structures. Int J Numer Meth Eng 64(1): 65–94

    Article  MATH  MathSciNet  Google Scholar 

  8. Cundall PA and Strack ODL (1979). A discrete numerical model for granular assemblies. Geotechnique 29(1): 47–65

    Article  Google Scholar 

  9. Cusatis G, Bazant ZPF and Cedolin LM (2003). Confinement-shear lattice model for conrete damage in tension and compression: I. Theory J Eng Mech 129(12): 1439–1448

    Article  Google Scholar 

  10. Deng SC, Liu JX, Zhang J and Liang NG (2006). Component assembly model and its application to quasi-brittle damage. Theor Appl Fract Mech 46: 232–242

    Article  Google Scholar 

  11. Deng SC, Liu JX, Zhang J and Liang NG (2007). Validation of component assembly model and its extension to plasticity. Theor Appl Fract Mech 47: 244–259

    Article  Google Scholar 

  12. Diebels S and Steeb H (2002). The size effect in foams and its theoretical and numerical investigation. Proc R Soc Lond A 58: 2869–2883

    MathSciNet  Google Scholar 

  13. Digby PJ (1981). The effective elastic modulli of porous granular rock. ASME J Appl Mech 48: 803–808

    Article  MATH  Google Scholar 

  14. Ferro G (2006). On dissipated energy density in compression for concrete. Eng Fract Mech 73: 1510–1530

    Article  Google Scholar 

  15. Gao HJ and Klein P (1998). Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J Mech Phys Solids 46(2): 187–218

    Article  MATH  Google Scholar 

  16. Goodman RE and Shi G (1985). Block theory and its application to rock engineering. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  17. Herrmann HJ and Roux S (1992). Statistical models for the fracture of disordered media. Elsevier, Amsterdam

    Google Scholar 

  18. Huang CY and Subhash G (2003). Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids. J Mech Phys Solids 51: 1089–1105

    Article  MATH  Google Scholar 

  19. Hughes TJR, Taylor RL and Kanoknukulchai S (1977). A simple and efficient finite element for bending. Int J Numer Eng 11: 1529–1543

    Article  MATH  Google Scholar 

  20. Ibrahimbegovic A and Depaplace A (2003). Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material. Comput Struct 81: 1255–1265

    Article  Google Scholar 

  21. Karihaloo BL, Shao PF and Xiao QZ (2003). Lattice modelling of the failure of particle composites. Eng Fract Mech 70: 2385–2406

    Article  Google Scholar 

  22. Kawai T (1978). New discrete models and their application to seismic response analysis of structures. Nucl Eng Des 48: 207–229

    Article  Google Scholar 

  23. Krajcinovic D (2000). Damage mechanics: accomplishments, trends and needs. Int J Solids Struct 37: 267–277

    Article  MATH  MathSciNet  Google Scholar 

  24. Lemaitre J (1996) A course on damage mechanics (in Chinese). Science Press, Beijing

  25. Lilliu G, van Mier JGM(2003). 3D lattice type fracture model for concrete. Eng Fract Mech 70: 927–941

    Article  Google Scholar 

  26. Liu JX, Deng SC, Zhang J and Liang NG (2007). Lattice type of fracture model for concrete. Theor Appl Fract Mech 48: 269–284

    Article  Google Scholar 

  27. Liu JX, Deng SC and Liang NG (2008). Comparison of the quasi-static method and the dynamic method for simulating fracture processes in concrete. Comput Mech 41: 647–660

    Article  MATH  Google Scholar 

  28. Liu JX, Deng SC, Zhang J, Liang NG (2007) Beam lattice modeling for the fracture of particle composites. Eng Mech (accepted)

  29. Ostoja-Starzewski M (2002). Lattice models in micromechanics. Appl Mech Rev 55: 35–60

    Article  Google Scholar 

  30. Ostoja-Starzewski M (2007). Microstructural Randomness and scaling in mechanics of materials. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  31. Potyondy DO and Cundall PA (2004). A bonded-particle model for rock. Int J Rock Mech Min Sci 41: 1329–1364

    Article  Google Scholar 

  32. Prado EP, van Mier JGM(2003). Effect of particle structure on mode I fracture process in concrete. Eng Fract Mech 70: 1793–1807

    Article  Google Scholar 

  33. Rots JG, Belletti B, Invernizzi S (2007) Robust modeling of RC structures with an “event-by-event” strategy. Eng Fract Mech (in press)

  34. Schlangen E, van Mier JGM (1992). Experimental and numerical analysis of the micromechanics of fracture of cement-based composites. Cem Conc Comp 14(2): 105–118

    Article  Google Scholar 

  35. Schlangen E and Garboczi EJ (1997). Fracture simulation of concrete using lattice models: computational aspects. Eng Fract Mech 57(2–3): 319–332

    Article  Google Scholar 

  36. Schorn H and Rode U (1987). 3-D modeling of process zone in concrete by numerical simulation. In: Shah, SP and Swartz, SE (eds) Fracture of concrete and rock, pp 220–228. Springer, New York

    Google Scholar 

  37. Shi G (1988) Discontinuous deformation analysis—a new numerical model for the statics, dynamics of block systems. PhD Thesis, University of California, Berkeley

  38. Shyu K (1993) Nodal-based discontinuous deformation analysis. PhD Thesis, University of California, Berkeley

  39. Trovalusci P and Masiani R (2003). Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int J solids struct 40: 1281–1297

    Article  MATH  Google Scholar 

  40. Wvan Mier JGM, van Vliet MRA, Wang TK (2002). Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mech Mater 34: 705–724

    Article  Google Scholar 

  41. van Vliet M, van Mier JGM (1995) Softening behaviour of concrete under uniaxial compression. In: Wittmann F (ed) Fracture mechanics of concrete structures. AEDIFICATIO Publishers, Freiburg, pp 383–396

  42. Walton K (1987). The effective elastic modulli of a random packing of spheres. J Mech Phys Solids 35: 213–226

    Article  MATH  Google Scholar 

  43. Wang TK, van Mier JGM, Bittencourt TN (2001) Statistical study of fracture in concrete. In: Ravi-Chandar K, Karihaloo BL, Kishi T, Ritchie RO, Yokobori AT Jr, Yokobori T (eds) Advances in fracture research, Proc ICF10 0665OR. Pergamon, New York

  44. Wang XC (2003). Finite element method,1st edn. Tsinghua University Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. X. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J.X., Zhao, Z.Y., Deng, S.C. et al. Numerical investigation of crack growth in concrete subjected to compression by the generalized beam lattice model. Comput Mech 43, 277–295 (2009). https://doi.org/10.1007/s00466-008-0305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0305-z

Keywords

Navigation