Skip to main content
Log in

Rotation manifold SO(3) and its tangential vectors

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we prove that incremental material rotation vectors belong to different tangent spaces of the rotation manifold SO(3) at a different instant. Moreover, we show that the material tangent space as the tangent space at unity is not a possible definition yielding geometrically inconsistent results, although this kind of definition is widely adopted in applied mechanics community. In addition, we show that the standard Newmark integration scheme for incremental rotations neglects first order terms of rotation vector, not third order terms. Finally, we show that the rotation interpolation of extracted nodal values on the rotation manifold is not an objective interpolation under the observer transformation. This clarifies controversy about the frame-indifference of geometrically exact beam formulations in their finite element implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R, Marsden J, Ratiu T (1983) Manifolds, tensor analysis and applications. Addison-Wesley, Reading

    MATH  Google Scholar 

  2. Argyris J (1982) An excursion into large rotations. Comp Methods Appl Mech Eng 32: 85–155

    Article  MATH  MathSciNet  Google Scholar 

  3. Argyris J, Poterasu VF (1993) Large rotation angles revisited application of lie algebra. Comput Methods Appl Mech Eng 103: 11–42

    Article  MATH  MathSciNet  Google Scholar 

  4. Cardona A, Géradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Num Meth Eng 26: 2403–2438

    Article  MATH  Google Scholar 

  5. Choquet-Bruhat Y, DeWitt-Demorette C, Dillard-Bleick M (1989) Analysis, manifolds and physics, Part I: basics. North-Holland, Amsterdam

    Google Scholar 

  6. Crisfield MA, Jelenic G (1999) Objectivity of strain measures in the geometrically exact 3-Dimensional beam theory and its finite-element implementation. Proc R Soc Lond A 455: 1125–1147

    Article  MATH  MathSciNet  Google Scholar 

  7. Géradin M, Cardona A (2001) Flexible multibody dynamics: a finite element approach. Wiley, Chichester

    Google Scholar 

  8. Ibrahimbegović A (1997) On the choice of finite rotation parameters. Comput Methods Appl Mech Eng 149: 49–71

    Article  MATH  Google Scholar 

  9. Ibrahimbegović A, Al Mikdad M (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Num Meth Eng 41: 781–814

    Article  MATH  Google Scholar 

  10. Ibrahimbegović A, Frey F, Kozar I (1995) Computational aspects of vector-like parametrization of 3-Dimensional finite rotations. Int J Numer Meth Eng 38: 3653–3673

    Article  MATH  Google Scholar 

  11. Jelenić G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comp Meth Appl Mech Eng 171: 141–171

    Article  MATH  Google Scholar 

  12. Marsden JE, Hughes TJR (1994) Mathematical foundation of elasticity. Dover, New York

    Google Scholar 

  13. Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. Springer, New York

    MATH  Google Scholar 

  14. Mäkinen J (2001) Critical study of Newmark-Scheme on manifold of finite rotations. Comput Meth Appl Mech Eng 191: 817–828

    Article  MATH  Google Scholar 

  15. Mäkinen J, Marjamäki H (2005) Total lagrangian parametrization of rotation manifold. In: Proceedings of fifth EUROMECH nonlinear dynamics conference. ENOC-2005, Eindhoven, pp 522–530. http://www.tut.fi/~jmamakin/ENOC2005.pdf

  16. Mäkinen J (2007) Total lagrangian reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9): 1009–1048

    Article  Google Scholar 

  17. Ogden RW (1984) Non-Linear elastic deformations. Ellis Horwood, Chichester

    Google Scholar 

  18. Rubin MB (2007) A simplified implicit Newmark integration scheme for finite rotations. Comput Math Appl 53(2): 219–231

    Article  MATH  MathSciNet  Google Scholar 

  19. Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motion—a geometrically exact approach. Comp Meth Appl Mech Eng 66: 125–161

    Article  MATH  MathSciNet  Google Scholar 

  20. Simo JC, Marsden JE, Krishnaprasad PS (1988) The hamiltonian structure of nonlinear elasticity: the material and convective representation of solids, rods, and plates. Arch Rat Mech Anal 104: 125–183

    Article  MATH  MathSciNet  Google Scholar 

  21. Stuelpnagel J (1964) On the parametrization of the 3-Dimensional rotation group. SIAM Rev 6: 422–430

    Article  MATH  MathSciNet  Google Scholar 

  22. Stumpf H, Hoppe U (1997) The application of tensor algebra on manifolds to nonlinear continuum mechanics–invited survey article. ZAMM Appl Math Mech 77: 327–339

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Mäkinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mäkinen, J. Rotation manifold SO(3) and its tangential vectors. Comput Mech 42, 907–919 (2008). https://doi.org/10.1007/s00466-008-0293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0293-z

Keywords

Navigation