Skip to main content
Log in

A 9-node co-rotational quadrilateral shell element

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new 9-node co-rotational curved quadrilateral shell element formulation is presented in this paper. Different from other existing co-rotational element formulations: (1) Additive rotational nodal variables are utilized in the present formulation, they are two well-chosen components of the mid-surface normal vector at each node, and are additive in an incremental solution procedure; (2) the internal force vector and the element tangent stiffness matrix are respectively the first derivative and the second derivative of the element strain energy with respect to the nodal variables, furthermore, all nodal variables are commutative in calculating the second derivatives, resulting in symmetric element tangent stiffness matrices in the local and global coordinate systems; (3) the element tangent stiffness matrix is updated using the total values of the nodal variables in an incremental solution procedure, making it advantageous for solving dynamic problems. Finally, several examples are solved to verify the reliability and computational efficiency of the proposed element formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Felippa CA and Haugen B (2005). A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194: 2285–2335

    Article  MATH  Google Scholar 

  2. Rankin CC and Brogan FA (1986). An element independent corotational procedure for the treatment of large rotation. ASME J Pressure Vessel Technol 108: 165–174

    Article  Google Scholar 

  3. Crisfield MA and Moita GF (1996). A co-rotational formulation for 2-D continua including incompatible modes. Int J Numer Methods Eng 39: 2619–2633

    Article  MATH  MathSciNet  Google Scholar 

  4. Yang HTY, Saigal S, Masud A and Kapania RK (2000). Survey of recent shell finite elements. Int J Numer Methods Eng 47: 101–127

    Article  MATH  MathSciNet  Google Scholar 

  5. Tham CL, Zhang Z and Masud A (2005). An elasto-plastic damage model cast in a co-rotational kinematic framework for large deformation analysis of laminated composite shells. Comput Methods Appl Mech Eng 194: 2641–2660

    Article  MATH  Google Scholar 

  6. Izzuddin BA (2005). An enhanced co-rotational approach for large displacement analysis of plates. Int J Numer Methods Eng 64: 1350–1374

    Article  MATH  Google Scholar 

  7. Wempner G (1969). Finite elements, finite rotations and small strains of flexible shells. Int J Solids Struct 5: 117–153

    Article  MATH  Google Scholar 

  8. Belytschko T and Hseih BJ (1973). Non-linear transient finite element analysis with convected co-ordinates. Int J Numer Methods Eng 7: 255–271

    Article  MATH  Google Scholar 

  9. Belytschko T and Glaum LW (1979). Application of higher order corotational stretch theories to nonlinear finite element analysis. Comput Struct 10: 175–182

    Article  MATH  Google Scholar 

  10. Argyris JH, Bahner H, Doltsnis J, et al. (1979) Finite element method—the natural approach. Comput Methods Appl Mech Eng 17/18:l–106

    Google Scholar 

  11. Oran C (1973). Tangent stiffness in plane frames. J Struct Div ASCE 99(ST6): 973–985

    Google Scholar 

  12. Oran C (1973). Tangent stiffness in space frames. J Struct Div ASCE 99(ST6): 987–1001

    Google Scholar 

  13. Stolarski H, Belytschko T and Lee SH (1995). Review of shell finite elements and corotational theories. Comput Mech Adv 2: 125–212

    MATH  MathSciNet  Google Scholar 

  14. Cardoso RPR, Valente RAF, Yoon JW, Gracio JJ and Jorge RMN (2006). A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness - Part II: Nonlinear applications. Int J Numer Methods Eng 67: 160–188

    Article  MATH  Google Scholar 

  15. Brunet M and Sabourin F (2006). Analysis of a rotation-free 4-node shell element. Int J Numer Methods Eng 66: 1483–1510

    Article  MATH  MathSciNet  Google Scholar 

  16. Kim KD and Lomboy GR (2006). A co-rotational quasi-conforming 4-node resultant shell element for large deformation elasto-plastic analysis. Comput Methods Appl Mech Eng 195: 6502–6522

    Article  MATH  Google Scholar 

  17. Liu WK, Guo Y, Tang S and Belytschko T (1998). A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comput Methods Appl Mech Eng 154: 69–132

    Article  MATH  MathSciNet  Google Scholar 

  18. Bathe KJ, Lee PS and Hiller JF (2003). Towards improving the MITC9 shell element. Comput Struct 81: 477–489

    Article  Google Scholar 

  19. Simo JC, Rifai MS and Fox DD (1992). On a stress resultant geometrically exact shell-model. 6. Conserving algorithms for nonlinear dynamics. Int J Numer Methods Eng 34(1): 117–164

    Article  MATH  MathSciNet  Google Scholar 

  20. Simo JC and Tarnow N (1994). A new energy and momentum conserving algorithm for the non-linear dynamics of shells. Int J Numer Methods Eng 37: 2527–2549

    Article  MATH  MathSciNet  Google Scholar 

  21. Dickinson MH, Lehmann FO and Sane SP (1999). Wing rotation and the aerodynamic basis of insect flight. Science 284: 1954–1960

    Article  Google Scholar 

  22. Li ZX (2007). A mixed co-rotational formulation of 2D beam element using vectorial rotational variables. Commun Numer Methods Eng 23: 45–69

    Article  MATH  Google Scholar 

  23. Li ZX (2007). A co-rotational formulation for 3D beam element using vectorial rotational variables. Comput Mech 39: 309–322

    Article  MATH  Google Scholar 

  24. Li ZX and Vu-Quoc L (2007). An efficient co-rotational formulation for curved triangular shell element. Int J Numer Methods Eng 72(9): 1029–1062

    Article  MathSciNet  Google Scholar 

  25. Crisfield MA (1991). Nonlinear finite element analysis of solid and structures, vol 1. Essentials Wiley, Chichester

    Google Scholar 

  26. Yang YB and Shieh MS (1990). Solution method for nonlinear problems with multiple critical points. AIAA J 28: 2110–2116

    Article  Google Scholar 

  27. Belytschko T, Wong BL and Stolarski H (1989). Assumed strain stabilization procedure for the 9-node Lagrange shell element. Int J Numer Methods Eng 28: 385–414

    Article  MATH  Google Scholar 

  28. MacNeal RH and Harder RL (1985). Proposed standard set of problems to test finite element accuracy. Finite Elements Anal Des 1: 3–20

    Article  Google Scholar 

  29. Szilard R (1974). Theory and analysis of plates. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  30. Bletzinger KU, Bischoff M and Ramm E (2000). Unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput Struct 75: 321–334

    Article  Google Scholar 

  31. Campello EMB, Pimenta PM and Wriggers P (2003). A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31: 505–518

    Article  MATH  Google Scholar 

  32. Simo JC, Fox DD and Rifai MS (1990). On a stress resultant geometrically exact shell model Part III: computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79: 21–70

    Article  MATH  MathSciNet  Google Scholar 

  33. Jiang L and Chernuka MW (1994). A simple four-noded corotational shell element for arbitrarily large rotations. Comput Struct 53: 1123–1132

    Article  MATH  Google Scholar 

  34. Celigoj CC (1996). Strain-and-displacement-based variational method applied to geometrically non-linear shells. Int J Numer Methods Eng 39: 2231–2248

    Article  MATH  Google Scholar 

  35. Klinkel S, Gruttmann F and Wagner W (2006). A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Eng 195: 179–201

    Article  MATH  Google Scholar 

  36. Klinkel S, Gruttmann F and Wagner W (1999). A continuum based three-dimensional shell element for laminated structures. Comput Struct 71: 43–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z.X., Izzuddin, B.A. & Vu-Quoc, L. A 9-node co-rotational quadrilateral shell element. Comput Mech 42, 873–884 (2008). https://doi.org/10.1007/s00466-008-0289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0289-8

Keywords

Navigation