Skip to main content
Log in

Free vibration analysis of composite and sandwich plates using an improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The new improved discrete Kirchhoff quadrilateral element based on the third-order zigzag theory developed earlier by the present authors for the static analysis of composite and sandwich plates is extended for dynamics and assessed for its performance for the free vibration response. The element is free from the shear locking. The finite element formulation is validated by comparing the results for simply supported plates with the analytical Navier solution of the zigzag theory. Comparison of the present results for the natural frequencies with those of a recently developed triangular element based on the zigzag theory, for composite and sandwich plates, establishes the superiority of the present element in respect of simplicity, accuracy and computational efficiency. The accuracy of the zigzag theory is assessed for composite and sandwich plates with various boundary conditions and aspect ratio by comparing the finite element results with the 3D elasticity analytical and finite element solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABAQUS/STANDARD User’s Manual (2002) vol. 1, Version 6.1

  2. Altenbach H (2000) On the determination of transverse shear stiffnesses of orthotropic plates. Zeit Angew Math Phys (ZAMP) 51: 629–649

    Article  MATH  MathSciNet  Google Scholar 

  3. Altenbach H (2000) An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int J Solids Struct 37: 3503–3520

    Article  MATH  Google Scholar 

  4. Averill RC, Yip YC (1996) Thick beam theory and finite element model with zig-zag sublaminate approximations. AIAA J 34: 1627–1632

    Article  MATH  Google Scholar 

  5. Batoz JL, Tahar MB (1982) Evaluation of a new quadrilateral thin plate bending element. Int J Numer Meth Eng 18: 1655–1677

    Article  MATH  Google Scholar 

  6. Carrera E (2003) Historical review of zig-zag theories for multilayered plates and shells. Appl Mech Rev 56: 287–308

    Article  Google Scholar 

  7. Chakrabarti A, Sheikh AH (2004) Vibration of laminate-faced sandwich plate by a new refined element. J Aerospace Eng Trans ASCE 17: 123–134

    Google Scholar 

  8. Cho M, Parmerter RR (1993) Efficient higher order composite plate theory for general lamination configurations. AIAA J 31: 1299–1306

    Article  MATH  Google Scholar 

  9. Di Sciuva M (1986) Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model. J Sound Vib 105: 425–442

    Article  Google Scholar 

  10. Di Sciuva M (1992) Multilayered anisotropic plate models with continuous interlaminar stresses. Compos Struct 22: 149–167

    Article  Google Scholar 

  11. Di Sciuva M (1993) A general quadrilateral multulayered plate element with continuous interlaminar stresses. Comput Struct 47: 91–105

    Article  MATH  Google Scholar 

  12. Di Sciuva M (1995) A third-order triangular multilayered plate finite element with continuous interlaminar stresses. Int J Numer Meth Eng 38: 1–26

    Article  MATH  Google Scholar 

  13. Ghosh AK, Dey SS (1994) Free vibration of laminated composite plates-A simple finite element based on higher order theory. Comput Struct 52: 397–404

    Article  MATH  Google Scholar 

  14. Ghugal YM, Shimpi RP (2002) A review of refined shear deformation theories of isotropic and anisotropic laminated plates. J Reinf Plast Compos 21: 775–813

    Article  Google Scholar 

  15. Hinton E, Campbell JS (1974) Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Meth Eng 8: 461–480

    Article  MATH  MathSciNet  Google Scholar 

  16. Jeychandrabose C, Kirkhope J (1984) Least squares strain smoothing for the eight-node serendipity plane stress element. Int J Numer Meth Eng 20: 1164–1166

    Article  Google Scholar 

  17. Jeychandrabose C, Kirkhope J, Meekisho L (1987) An improved discrete Kirchhoff quadrilateral thin-plate bending element. Int J Numer Meth Eng 24: 635–654

    Article  Google Scholar 

  18. Kapuria S, Achary GGS (2005) Exact 3D piezoelasticity solution of hybrid cross-ply plates with damping under harmonic electro-mechanical loads. J Sound Vib 282: 617–634

    Article  Google Scholar 

  19. Kapuria S, Kulkarni SD (2007) An improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory for static analysis of composite and sandwich plates. Int J Numer Meth Eng 69: 1948–1981

    Article  Google Scholar 

  20. Kärger L, Wetzel A, Rolfes R, Rohwer K (2006) Three-layered sandwich element with improved transverse shear stiffness and stresses based on FSDT. Comput Struct 84: 843–854

    Article  Google Scholar 

  21. Kim JS, Cho M (2002) Buckling analysis for delaminated composites using plate bending elements based on higher-order zig-zag theory. Int J Numer Meth Eng 55: 1323–1343

    Article  MATH  Google Scholar 

  22. Kulkarni SD, Kapuria S (2007) A new discrete Kirchhoff quadrilateral element based on the third-order theory for composite plates. Comput Mech 39: 237–246

    Article  MATH  Google Scholar 

  23. Lu X, Liu D (1992) An interlaminar shear stress continuity theory for both thin and thick composite laminates. J Appl Mech Trans ASME 59: 502–509

    Article  MATH  Google Scholar 

  24. Mallikarjuna, Kant T (1993) A critical review and some results of recently developed refined theories of fibre-reinforced laminated composites and sandwiches. Compos Struct 23: 293–312

    Article  Google Scholar 

  25. Matsunaga H (2001) Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses. Int J Mech Sci 43: 1925–1944

    Article  MATH  Google Scholar 

  26. Murakami H (1986) Laminated composite plate theory with improved in-plane responses. J Appl Mech Trans ASME 53: 661–666

    MATH  Google Scholar 

  27. Noor AK (1973) Free vibrations of multilayered composite plates. AIAA J 11: 1038–1039

    Article  Google Scholar 

  28. Noor AK, Burton WS (1989) Assessment of shear deformation theories for multilayered composite plates. Appl Mech Rev 42: 1–13

    Google Scholar 

  29. Oh J, Cho M, Kim JS (2005) Dynamic analysis of composite plate with multiple delaminations based on higher-order zigzag theory. Int J Solids Struct 42: 6122–6140

    MATH  Google Scholar 

  30. Pai PF (1995) A new look at shear correction factors and warping functions of anisotropic laminates. Int J Solids Struct 32: 2295–2313

    Article  MATH  Google Scholar 

  31. Petyt M (1990) Introduction to Finite Element Vibration Analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. Phan ND, Reddy JN (1985) Analysis of laminated composite plates using a higher order shear deformation theory. Int J Numer Meth Eng 21: 2201–2219

    Article  MATH  Google Scholar 

  33. Putcha NS, Reddy JN (1986) Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory. J Sound Vib 104: 285–300

    Article  Google Scholar 

  34. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech Trans ASME 51: 745–752

    MATH  Google Scholar 

  35. Reddy JN (1989) On refined computational models of composite laminates. Int J Numer Meth Eng 27: 361–382

    Article  MATH  Google Scholar 

  36. Reddy JN, Khdeir AA (1989) Buckling and vibration of laminated composite plates using various plate theories. AIAA J 27: 1808–1817

    Article  MATH  MathSciNet  Google Scholar 

  37. Robbins DH, Reddy JN (1993) Modelling of thick composites using a layerwise laminate theory. Int J Numer Meth Eng 36: 655–677

    Article  MATH  Google Scholar 

  38. Rolfes R, Rohwer K (1997) Improved transverse shear stresses in composite finite elements based on first order shear deformation theory. Int J Numer Meth Eng 40: 51–60

    Article  Google Scholar 

  39. Rolfes R, Rohwer K (1998) Efficient linear transverse normal stress analysis of layered composite plates. Comput Struct 68: 643–652

    Article  MATH  Google Scholar 

  40. Shu X, Sun L (1994) An improved simple higher-order theory for laminated composite plates. Comput Struct 50: 231–236

    Article  MATH  Google Scholar 

  41. Srinivas S, Rao AK (1970) Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int J Solids Struct 6: 1463–1481

    Article  MATH  Google Scholar 

  42. Toledano A, Murakami H (1987) A composite plate theory for arbitrary laminate configurations. J Appl Mech Trans ASME 54: 181–189

    MATH  Google Scholar 

  43. Wang CM, Ang KK, Yang L, Watanabe E (2000) Free vibration of skew sandwich plates with laminated facings. J Sound Vib 235: 317–340

    Article  Google Scholar 

  44. Wang S (1997) Free vibration analysis of skew fibre-reinforced composite laminates based on first-order shear deformation plate theory. Comput Struct 63: 525–538

    Article  MATH  Google Scholar 

  45. Wetzel A, Kärger L, Rolfes R, Rohwer K (2005) Evaluation of two finite element formulations for a rapid 3D stress analysis of sandwich structures. Comput Struct 83: 1537–1545

    Article  Google Scholar 

  46. Whitney JM, Pagano NJ (1970) Shear deformation in heterogeneous anisotropic plates. J Appl Mech Trans ASME 37: 1031–1036

    MATH  Google Scholar 

  47. Xu K, Noor AK, Tang YY (1995) Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates. Comput Meth Appl Mech Eng 126: 355–371

    Article  Google Scholar 

  48. Yang PC, Norris CH, Stavsky Y (1966) Elastic wave propgation in heterogeneous plate. Int J Solids Struct 2: 665–684

    Article  Google Scholar 

  49. Zienkiewicz OC, Cheung YK (1964) The finite element method for the analysis of elastic, isotropic and orthotropic slabs. Proc Inst Civil Eng 28: 471–488

    Google Scholar 

  50. Zienkiewicz OC, Taylor RL (2000) The finite element method. Solid Mechanics, vol. 2. Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kapuria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, S.D., Kapuria, S. Free vibration analysis of composite and sandwich plates using an improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory. Comput Mech 42, 803–824 (2008). https://doi.org/10.1007/s00466-008-0285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0285-z

Keywords

Navigation