Skip to main content
Log in

Numerical modelling of acoustic–elastodynamic coupled problems by stabilized boundary element techniques

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, an efficient, flexible, accurate and stable algorithm to numerically model interacting acoustic–elastodynamic sub-domains is described. Stabilized time-domain boundary element techniques are considered to discretize each sub-domain of the model and proper numerical expressions on acoustic–elastodynamic interfaces are presented. Moreover, stabilized iterative coupling procedures are adopted and different time and space sub-domain discretizations are allowed, improving the robustness and versatility of the methodology. At the end of the paper, numerical results are presented, illustrating the potentialities of the proposed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lombard B, Piraux J (2004) Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. J Comput Phys 195: 90–116

    Article  MATH  MathSciNet  Google Scholar 

  2. Collino F, Joly P, Millot F (1997) Fictitious domain method for unsteady problems: application to electromagnetic scattering. J Comput Phys 138: 907–938

    Article  MATH  MathSciNet  Google Scholar 

  3. Zhang C, LeVeque RJ (1997) The immersed interface method for acoustic wave equations with discontinuous coefficients. Wave Motion 25: 237–263

    Article  MATH  MathSciNet  Google Scholar 

  4. Lombard B (2002) Modélisation Numérique de la Propagation des Ondes Acoustiques et Elastiques en Présence d’Interfaces. Ph.D. Thesis, University of Aix-Marseille II, France

  5. Daniel WJT (1997) Analysis and implementation of a new constant acceleration subcycling algorithm. Int J Numer Methods Eng 40: 2841–2855

    Article  MATH  Google Scholar 

  6. Smolinski P (1996) Subcycling integration with non-integer time steps for structural dynamics problems. Comput Struct 59: 273–281

    Article  MATH  MathSciNet  Google Scholar 

  7. Belytschko T, Lu YY (1993) Explicit multi-time step integration for first and second order finite element semi-discretization. Comput Methods Appl Mech Eng 108: 353–383

    Article  MATH  MathSciNet  Google Scholar 

  8. Soares D Jr, Mansur WJ, Lima DL (2007) An explicit multi-level time-step algorithm to model the propagation of interacting acoustic-elastic waves using finite element/finite difference coupled procedures. Comput Model Eng Sci 17: 19–34

    Google Scholar 

  9. Mansur WJ (1983) A time-stepping technique to solve wave propagation problems using the boundary element method. Ph.D. Thesis, University of Southampton, England

  10. Birgisson B, Siebrits E, Peirce AP (1999) Elastodynamic direct boundary element methods with enhanced numerical stability properties. Int J Numer Methods Eng 46: 871–888

    Article  MATH  MathSciNet  Google Scholar 

  11. Frangi A, Novati G (1999) On the numerical stability of time-domain elastodynamic analyses by BEM. Comput Methods Appl Mech Eng 173: 403–417

    Article  MATH  MathSciNet  Google Scholar 

  12. Frangi A (2000) Causal shape functions in time domain boundary element method. Comput Mech 25: 533–541

    Article  MATH  MathSciNet  Google Scholar 

  13. Carrer JAM, Mansur WJ (2000) Time discontinuous linear traction approximation in time-domain BEM: 2D elastodynamics. Int J Numer Methods Eng 49: 833–848

    Article  MATH  Google Scholar 

  14. Mansur WJ, Carrer JAM, Siqueira EFN (1998) Time discontinuous linear traction approximation in time-domain BEM scalar wave propagation analysis. Int J Numer Methods Eng 42: 667–683

    Article  MATH  MathSciNet  Google Scholar 

  15. Yu G, Mansur WJ, Carrer JAM, Gong L (1998) Time weighting in time domain BEM. Eng Anal Bound Elem 22: 175–181

    Article  MATH  Google Scholar 

  16. Araujo FC, Mansur WJ, Nishikava LK (1999) A linear θ time-marching algorithm in 3D BEM formulation for elastodynamics. Eng Anal Bound Elem 23: 825–833

    Article  MATH  Google Scholar 

  17. Yu G, Mansur WJ, Carrer JAM, Gong L (1998) A linear θ method applied to 2D time-domain BEM. Commun Numer Methods Eng 14: 1171–1179

    Article  MATH  Google Scholar 

  18. Yu G, Mansur WJ, Carrer JAM (1999) The linear θ method for 2D elastodynamic BE analysis. Comput Mech 24: 82–89

    Article  MATH  Google Scholar 

  19. Yu G, Mansur WJ, Carrer JAM, Gong L (2000) Stability of Galerkin and collocation time domain boundary element methods as applied to the scalar wave equation. Comput Struct 74: 495–506

    Article  MathSciNet  Google Scholar 

  20. Rizos DC, Karabalis DL (1994) Advanced direct time domain BEM formulation for general 3D elastodynamic problems. Comput Mech 15: 249–269

    Article  MATH  MathSciNet  Google Scholar 

  21. Siebrits E, Peirce AP (1997) Implementation and application of elastodynamic boundary element discretization with improved stability properties. Eng Comput 14: 669–695

    Article  MATH  Google Scholar 

  22. Carrer JAM, Mansur WJ (2002) Time-dependent fundamental solution generated by a not impulsive source in the boundary element method analysis of the 2D scalar wave equation. Commun Numer Methods Eng 18: 277–285

    Article  MATH  Google Scholar 

  23. Soares D Jr, Mansur WJ (2007) An efficient stabilized boundary element formulation for 2D time-domain acoustics and elastodynamics. Comput Mech 40: 355–365

    Article  Google Scholar 

  24. Demirel V, Wang S (1987) An efficient boundary element method for two-dimensional transient wave propagation problems. Appl Math Model 11: 411–416

    Article  MATH  MathSciNet  Google Scholar 

  25. Mansur WJ, de Lima Silva W (1992) Efficient time truncation in two-dimensional BEM analysis of transient wave propagation problems. Earthquake Eng Struct Dyn 21: 51–63

    Article  Google Scholar 

  26. Soares D Jr, Mansur WJ (2004) Compression of time generated matrices in two-dimensional time-domain elastodynamic BEM analysis. Int J Numer Methods Eng 61: 1209–1218

    Article  MATH  Google Scholar 

  27. Carrer JAM, Mansur WJ (2006) Solution of the two-dimensional scalar wave equation by the time-domain boundary element method: lagrange truncation strategy in time integration. Struct Eng Mech 23: 263–278

    Google Scholar 

  28. Tröndle G, Antes H (2001) Efficient numerical techniques in time and frequency domain, chap 6. In: von Estorff O(eds) Boundary elements in acoustics, advances & applications. WIT Press, Southampton

    Google Scholar 

  29. Tham LG, Chu CK (2000) Some experiences on programming of time domain boundary element in parallel processing environment. J Sound Vib 233: 1–17

    Article  Google Scholar 

  30. Brebbia CA (1978) The boundary element method for engineers. Pentech Press, London

    Google Scholar 

  31. Zienkiewicz OC, Kelly DM, Bettess P (1977) The coupling of the finite element method and boundary solution procedures. Int J Numer Methods Eng 11: 355–376

    Article  MATH  MathSciNet  Google Scholar 

  32. Brebbia CA, Georgiou P (1979) Combination of boundary and finite elements in elastostatics. Appl Math Model 3: 212–220

    Article  MATH  Google Scholar 

  33. Karabalis DL, Beskos DE (1985) Dynamic response of 3D flexible foundations by time domain BEM and FEM. Solid Dyn Earthquake Eng 4: 91–101

    Article  Google Scholar 

  34. von Estorff O, Prabucki MJ (1990) Dynamic response in time domain by coupled boundary and finite elements. Comput Mech 6: 35–46

    Article  MATH  Google Scholar 

  35. von Estorff O, Antes H (1991) On FEM–BEM coupling for fluid–structure interaction analysis in the time domain. Int J Numer Methods Eng 31: 1151–1168

    Article  MATH  Google Scholar 

  36. von Estorff O (1992) Coupling of BEM and FEM in the time domain: some remarks on its applicability and efficiency. Comput Struct 44: 325–337

    Article  Google Scholar 

  37. Belytschko T, Lu YY (1994) A variational coupled FE-BE method for transient problems. Int J Numer Methods Eng 37: 91–105

    Article  MATH  MathSciNet  Google Scholar 

  38. von Estorff O, Firuziaan M (2000) Coupled BEM/FEM approach for nonlinear soil/structure interaction. Eng Anal Bound Elem 24: 715–725

    Article  MATH  Google Scholar 

  39. Czygan O, von Estorff O (2002) Fluid–structure interaction by coupling BEM and nonlinear FEM. Eng Anal Bound Elem 26: 773–779

    Article  MATH  Google Scholar 

  40. Yu G, Mansur WJ, Carrer JAM, Lie ST (2001) A more stable scheme for BEM/FEM coupling applied to two-dimensional elastodynamics. Comput Struct 79: 811–823

    Article  Google Scholar 

  41. Yu GY, Lie ST, Fan SC (2002) Stable boundary element method/finite element method procedure for dynamic fluid structure interactions. J Eng Mech 128: 909–915

    Article  Google Scholar 

  42. Soares D Jr (2004) Dynamic analysis of non-linear soil–fluid-structure coupled systems by the finite element method and the boundary element method (in Portuguese). Ph.D. Thesis, Federal University of Rio de Janeiro, Brazil

  43. Elleithy WM, Al-Gahtani HJ (2000) An overlapping domain decomposition approach for coupling the finite and boundary element methods. Eng Anal Bound Elem 24: 391–398

    Article  MATH  Google Scholar 

  44. Elleithy WM, Al-Gahtani HJ, El-Gebeily M (2001) Iterative coupling of BE and FE methods in elastostatics. Eng Anal Bound Elem 25: 685–695

    Article  MATH  Google Scholar 

  45. Soares D Jr, von Estorff O (2004) Combination of FEM and BEM by an iterative coupling procedure. In: 4th European congress on computational methods in applied sciences and engineering, ECCOMAS 2004, Jyväskylä, Finland

  46. Soares D Jr, von Estorff O, Mansur WJ (2004) Iterative coupling of BEM and FEM for nonlinear dynamic analyses. Comput Mech 34: 67–73

    MATH  Google Scholar 

  47. Soares D Jr, von Estorff O, Mansur WJ (2005) Efficient nonlinear solid–fluid interaction analysis by an iterative BEM/FEM coupling. Int J Numer Methods Eng 64: 1416–1431

    Article  MATH  Google Scholar 

  48. von Estorff O, Hagen C (2005) Iterative coupling of FEM and BEM in 3D transient elastodynamic. Eng Anal Bound Elem 29: 775–787

    Article  Google Scholar 

  49. Carrer JAM, Telles JCF (1992) A boundary element formulation to solve transient dynamic elastoplastic problems. Comput Struct 13: 707–713

    Article  Google Scholar 

  50. Soares D Jr, Carrer JAM, Mansur WJ (2005) Non-linear elastodynamic analysis by the BEM: an approach based on the iterative coupling of the D-BEM and TD-BEM formulations. Eng Anal Bound Elem 29: 761–774

    Article  Google Scholar 

  51. Soares D Jr, Mansur WJ (2006) Dynamic analysis of fluid–solid–structure interaction problems by the boundary element method. J Comput Phys 219: 498–512

    Article  MATH  Google Scholar 

  52. Soares D Jr, Mansur WJ (2007) Iterative coupling of different boundary element formulations: applications concerning time-domain nonlinear analysis of fluid-soil-structure coupled systems. In: XXVIII Iberian Latin American congress on computational methods in engineering, CILAMCE 2007, Porto, Portugal

  53. Hadamard J (1952) Lectures on Cauchy’s problem in linear partial differential equations. Dover Publications, New York

    MATH  Google Scholar 

  54. Dominguez J (1992) Boundary elements in dynamics. Computational Mechanics Publications, Southampton

    Google Scholar 

  55. Carrer JAM, Mansur WJ (1993) Two-dimensional transient BEM analysis for the scalar wave equation: kernels. Eng Anal Bound Elem 12: 283–288

    Article  Google Scholar 

  56. Soares D Jr, Carrer JAM, Telles JCF, Mansur WJ (2002) Numerical computation of internal stress and velocity in time-domain BEM formulation for elastodynamics. Comput Mech 30: 38–47

    Article  MATH  Google Scholar 

  57. Newmark NM (1959) A method of computation for structural dynamics. ASCE J Eng Mech Div 85: 67–94

    Google Scholar 

  58. Czygan O (2002) Fluid/Struktur-Kopplung bei ebenen und rotationssymmetrischen Systemen unter Berücksichtigung nichtlinearen Strukturverhaltens. Ph.D. Thesis, TU Hamburg-Harburg, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Soares Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, D. Numerical modelling of acoustic–elastodynamic coupled problems by stabilized boundary element techniques. Comput Mech 42, 787–802 (2008). https://doi.org/10.1007/s00466-008-0282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0282-2

Keywords

Navigation